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1. OVERVIEW

Much of the theory-building in number theory has been guided by a deep tension: while it is important to
treat all the completions of the rationals1 Q symmetrically (cf. the Hasse principle), it is also clear that there
exist key disanalogies between the p-adics and the reals. The depth of these disanalogies can be measured
by how many powerful technologies work well in one setting but not the other.2 Indeed, as Mazur muses
[Maz93]:

“A major theme in the development of Number Theory has been to try to bring R somewhat
more into line with the p-adic fields; a major mystery is why R resists this attempt so
strenuously.”

This leads to a natural question, which forms the primary focus of the thesis.

Question 1. What is the right perspective from which to understand this tension? That is, how can we treat
the p-adics and the reals symmetrically whilst also accommodating their differences?

This thesis leverages advanced tools from topos theory to investigate the subtle foundational issues un-
derlying Question 1. Topos theory, at its core, is a framework motivated by recognising topological ideas
in settings which are not obviously topological. In plain English, topos theory asks: how might we think of
objects as being points in a space, or as spaces themselves? This question, properly understood, is both sub-
tle and surprisingly deep. In particular, while it is well-known that topos theory provided crucial tools that
led to the solution of the famous Weil Conjectures in algebraic geometry, the logical aspects of topos theory
are less appreciated. This thesis bridges the gap, investigating the interplay between algebraic geometry,
category theory and logic through the unique lens of topos theory.

What does this perspective accomplish? Certainly the existence of serious interactions between algebraic
geometry and logic is not new. Interdisciplinarity is also not its own good. The true value of this perspec-
tive lies in its careful examination of the role of set theory within mathematics. Sometimes, classical set
theory distorts the foundations of our mathematics. In contrast, topos theory encourages a strict regime of
constructive mathematics, known as geometric mathematics. This approach arises from the tight connec-
tion between Grothendieck toposes and geometric logic (see [Vic99, Vic22]). Reworking key notions and
results geometrically systematically pulls our mathematics away from set theory and its classical assump-
tions. Most significantly: this shift reveals subtle connections between topology and algebra previously
obscured, raising challenging implications for Question 1 that extend far beyond constructivist concerns and
are of interest to mainstream mathematicians.

This thesis contributes to the field of categorical logic in four significant ways.
(1) Topos-theoretic Characterisation of Places. A longstanding assumption in number theory is to

view the completions of Q as corresponding to points in a space (also known as places) – Qp corre-
sponds to prime ideals of Z whereas R corresponds to a single formal prime at infinity. Here’s the big
surprise. When investigated from topos theory, while the p-adic places correspond to singletons (as
expected), the real place corresponds to a blurred unit interval

 −−
[0, 1] equipped with a non-standard

1The same issue arises for a general number field, but this paper shall primarily focus on the basic case of Q.
2 One obvious example is how many choose to work with the finite adeles (i.e. just the p-adics, ignoring the reals) and not the

full adele ring. See, for instance, Huber’s work [Hub91] on the Beilinson-Parshin adeles, where she writes: “We want to stress that
at this stage only a generalization of the finite adeles is found. It is not clear what one should take at infinity, or in fact even what
the infinite ‘places’ should be.”
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topology. This is very unexpected and new, and it is interesting to ask what the implications are for
Question 1 on reconciling the p-adics and the reals.

(2) Advancing Knowledge in Constructive Mathematics. We develop geometric accounts of real
exponentiation and logarithms for both Dedekind and one-sided reals. In addition, we provide a
geometric proof of Ostrowski’s Theorem for absolute values over Q and multiplicative seminorms
over Z. Both results are fully constructive and topos-valid.

(3) Resolving Foundational Issues in Berkovich Geometry. Our topos-theoretic investigation of Os-
trowski’s Theorem reveals an interesting interaction between topology and algebra. Extending this
insight, we refine a foundational result in Berkovich Geometry. Specifically, Berkovich’s Disc The-
orem classifies the points of a specific family of Berkovich Spectra over a non-trivially valued base
field. The hypothesis of “non-trivially valued” was long thought by experts to be essential – since the
usual proof breaks down otherwise – but we were able to utilise point-free techniques to eliminate
this hypothesis, extending Berkovich’s Disc Theorem to a wider family of Berkovich spectra.

(4) Deeper Perspectives on Topology & Logic. This thesis is guided by the fundamental premise that
topology and logic have a natural interaction. Interestingly, topos theorists and model theorists have
developed this perspective within their domains of categorical and set-based logic respectively. De-
spite many exciting points of conceptual contact, these connections remain relatively underexplored.
Chapter 2 of the thesis introduces the foundations of the topos-theoretic perspective on logic, written
with model theorist in mind, partly to foster better dialogue between the two communities.

The remainder of this document provides the details. Section 2.1 gives the number-theoretic motivation
for our work. Section 2.2 introduces the unique features of geometric logic and its connection to topos
theory. Section 3 introduces the main test problem of the thesis, and discusses the various results obtained
in pursuit of its solution. An electronic copy of the thesis can be found here.

2. PRELIMINARIES

2.1. Point-set Reasoning in Number Theory. Recall Question 1 which asked how we ought to develop a
framework that treats both R and the p-adics symmetrically whilst respecting their differences. The number
theorist is likely to have one of two reactions to this challenge (and in fact, perhaps both). First, that our
understanding of the reals and the p-adics should be guided by the function field analogy. Two, as already
alluded to by Mazur, that we should strive to develop tools that work well for both settings. We discuss this
in the context of Arakelov intersection theory [Ara74, PR21].

The Function Field Case. Consider a smooth affine curve C over an algebraically closed field k. Then, take
the (unique) smooth compactification ofC, which adds a finite number of points to yield a smooth projective
curve C. A divisor D on C is a finite formal linear combination of points on C

D =
∑
P∈C

nP · P, nP ∈ Z. (1)

In particular, for any non-zero rational function f on C, one can define the divisor

(f) =
∑
P∈C

ordP (f) · P, (2)

where ordP (f) denotes the multiplicity of f at P . One can then compute the degree of divisor (f) and
deduce

deg(f) =
∑
P∈C

ordP (f) = 0, (3)

a key result that allows us to develop a good intersection theory of divisors.

The Number Field Case. Consider Q and the spectrum of the ring of integers Spec(Z). Notice the non-zero
primes p ∈ Spec(Z) each corresponds to the p-adic numbers Qp. To account for R, we formally add to
Spec(Z) the set of complex embeddings σ : Q ↪! C; in which case, this gives a single embedding factoring
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through R.3 Denote this enlargement of Spec(Z) as ΛQ, which we shall call the set of places of Q. Following
standard conventions, we denote the “real prime” adjoined to Spec(Z) as∞.

Next, define the Arakelov divisor D on ΛQ as the following finite formal linear combination:

D =
∑
p

np · p+ α∞ · ∞, np ∈ Z, α∞ ∈ R, (4)

where the first sum runs over the set of non-zero primes in Spec(Z). As before, given any non-zero rational
f ∈ Q, one can define its Arakelov divisor (f), whose Arakelov degree can be computed to give

d̂eg(f) =
∑
v∈ΛQ

log |f |v = 0. (5)

Considered side-by-side, the analogy between the two setups becomes clear, but notice the formal nature
of the number field case. In the function field case, we added points to the smooth affine curve C by
performing a geometric construction on C (“smooth compactification”). By contrast, the number field case
starts with a formal abstraction: take the underlying set of Spec(Z). It is this formal move that allows us
to combine the set of primes with the set of complex embeddings (even though they are a priori different
objects), giving a new set ΛQ which we use to index the summands of the Arakelov divisor.

This style of point-set reasoning (“take the set of . . . ”) is widely accepted in classical mathematics, but
here it presents a challenge to our understanding. For one, extending the function field analogy, one would
like to regard ΛQ as the compactification of Spec(Z). But on what grounds? Strictly speaking, ΛQ is just a
set of elements with no topology — it is only by analogy that one might regard it as morally being a kind of
compactified affine curve. Second, notice that the construction of ΛQ is still guided by an obvious case-split
between the p-adics vs. the reals. In fact, as pointed out in [Bak08], Arakelov intersection theory uses very
different-looking tools to deal with these two components4, raising sharp questions about the extent to which
Arakelov theory successfully resolves the lack of symmetry between the p-adics and the reals.

2.2. Connections to Topos Theory. Having provided the number-theoretic context, we now shift gears
and discuss the connection to the logical aspects of topos theory. Our main point of leverage is the following
structure theorem.

Theorem 2. Every (Grothendieck) topos E is a classifying topos of some geometric theory TE. Conversely,
every geometric theory T has a classifying topos S[T].

The precise definitions of the relevant terms will be deferred till later. For now, let us just say:
• A theory T is a set of logical axioms that describes structures of interest (e.g. groups, rings etc.);
• Geometric logic is a logic that is tailored to reflect topology, e.g. connectives ∧ and

∨
to match

intersection and union of opens. A geometric theory is a set of axioms expressed in geometric logic;
• A model MT of a geometric theory T is a structure satisfying the description expressed by T;
• A topos E is some kind of category satisfying certain nice properties;5

• A classifying topos of T, denoted S[T], is a topos representing the universe of all models of T. In
particular, it contains a generic model GT, which is generic in the informal sense that it gives a
blueprint from which all models MT of T can be derived.6

This sets up the following question: does there exist a geometric theory Tcomp whose models are the com-
pletions of Q (up to topological equivalence)? Notice if yes, then Theorem 2 gives a classifying topos of
Tcomp along with a generic model, which we shall call the generic completion of Q.

Why might this be an interesting perspective? We give two natural reasons. First, the generic model GT
of any geometric theory T is conservative, i.e. given any property φ expressible in geometric logic, φ holds

3In the general case of a number field K, the construction involves adding [K : Q] many complex embeddings to Spec(OK).
4Baker’s remark [Bak08] was made in the context of motivating the development of non-Archimedean potential theory, which

aims to formulate an Arakelov theory that applies analytic methods from potential theory not only at the Archimedean places but
also at the non-Archimedean places too. For details on how this works for curves, see, e.g. [BR10].

5Convention: the unqualified term “topos” will always mean a Grothendieck 1-topos, unless stated otherwise. The expert reader
may take the phrase “nice properties” to mean Giraud’s axiomatic characterisation of a topos.

6More precisely: given any T-model MT living in any topos E, there exists a functor f∗ : S[T] ! E, unique up to isomorphism,
such that f∗(GT) ∼= MT whilst also preserving colimits and finite limits.
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for GT iff φ holds for all models of T. There are a couple ways to read this in the present context. One
interpretation: the generic completion of Q is a device that allows us to reason about properties that hold
for all completions of Q in a symmetric manner — much like the adele ring AQ in classical number theory.
Another interpretation: the generic completion of Q is a construction possessing no other properties besides
being a completion of Q. As such, if we wish to calibrate our understanding of the p-adics vs. the reals, it
can be helpful to have a well-defined object that distills precisely what their shared similarities are.

The second, and more fundamental, reason is that the topos-theoretic perspective pulls Question 1 away
from classical set theory, and opens it up to new tools from logic and category theory. This requires some
explanation. To the uninitiated, the existence of serious interactions between number theory and logic may
come as a surprise, but this itself is certainly not new. For instance, continuing with the function field
analogy, a remarkable transfer theorem was proved by the model theorists back in the 1960s:

Theorem 3 (Ax-Kochen-Eršov Principle [AK65, Ers65]). As our setup,

• Let U be a non-principal (= contains all cofinite sets) ultrafilter on the set of primes;
• Let

∏
pQp/U be the ultraproduct of p-adic fields Qp;

• Let
∏
p Fp((t))/U be the ultraproduct of the fields of formal Laurent series over Fp.

Then,
∏
pQp/U and

∏
p Fp((t))/U are elementarily equivalent.

In plainer terms, the Ax-Kochen-Eršov Principle says: given any first-order logical statement φ about
valued fields, there exists a finite set C of primes such that φ holds for Fp((t)) iff φ holds for Qp just in case
p /∈ C. As a beautiful application of this result, Ax and Kochen [AK65] proved that every homogeneous
polynomial of degree d with more than d2 variables has a non-trivial solution in Qp for all but finitely
many primes p. However, while this breakthrough result may be vindicating for the classical logician,
its non-constructive aspects makes it problematic for the topos theorist. In particular, notice that the Ax-
Kochen-Eršov Principle is formulated using non-principal ultrafilters, whose existence implies a weak form
of choice and thus cannot be shown constructively.7

This discussion sets up an important organising principle of this thesis. Properly understood, Theorem 2
gives rise to a new understanding of a topos as a so-called “point-free space”8, which we define below:

Definition 4. A (point-free) space is a space X whose points are the models of a geometric theory. A map
f : X ! Y is defined by a geometric construction of points f(x) ∈ Y out of points x ∈ X .

This unusual marriage of topology and logic, which we call “point-free topology”, differs from the clas-
sical perspective in two important ways. One, it challenges the classical notion of a space as a set decorated
with a chosen topology. Two, it generalises the classical notion of model as a set decorated with the logical
data of relations and/or functions that have been singled out for study. Further details can be found in Chap-
ter 2 of the thesis [Ng23a], but notice that this perspective already gives some indication of how point-free
topology systematically pulls our mathematics away from its underlying set theory.

Returning to our original context, what does the point-free perspective mean for Question 1? The method-
ological upshot: in order to work with models as if they were points of some kind of generalised space
(embodied by the topos), we shall need to adhere to a strict regime of constructive mathematics known as
geometric mathematics [Vic07a, Vic14].9 In practice, “working geometrically” means abandoning many
classical tools and principles in exchange for new ones. Unlike the model theorist, we do not have the axiom
of choice, and so we shall prefer to work with the generic model of a theory rather than the ultraproducts

7This fact follows from a combination of two results: [HL67] shows that the strongest form of the ultrafilter lemma (= all filters
can be extended to ultrafilters) does not imply the standard Axiom of Choice; [Bla77] shows that the weakest form of ultrafilter the
lemma (= there exists a non-principal ultrafilter on some set) cannot be proved in ZF set theory.

8There are various understandings of this phrase in the literature (e.g. locales, formal topologies, etc.), but we believe they can be
subsumed by the definition below. To elaborate: locales [actually, frames] can be understood as corresponding to the Lindenbaum
Algebras of propositional geometric theories (whose points are the completely prime filters) whereas formal topologies can be
understood as presenting the geometric theory directly, with the base as signature and covers as axioms. For details, see [Vic07b].

9To work geometrically means to reason using constructions that are preserved by pullback along geometric morphisms between
toposes. As will be explained in due course, this essentially means working with constructions/properties built out of finite limits
and arbitrary colimits.
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of its models10; and unlike the classical number theorist, we cannot take the underlying set of Spec(Z) (at
least, not without losing geometricity), and so we must find other ways of dealing with the places of Q.

3. RESULTS OF THESIS

Hereafter, the term “space” shall always mean a point-free space (cf. Definition 4) unless stated otherwise.
As previously discussed, this thesis will focus on the following test problem:

Problem 5. Construct and describe the classifying topos of completions of Q (up to equivalence).

Step One: Point-free Real Exponentiation. The first step towards constructing this topos is understanding
when a given completion K of Q is topologically equivalent to another completion K ′. Classically, com-
pletions of Q are defined as point-set spaces comprising the Cauchy sequences of Q with respect to some
kind of metric on Q:

| · | : Q −! [0,∞) (6)

x 7−! |x|

known as an absolute value. Given two absolute values | · |1, | · |2, we can define an equivalence relation
∼ where | · |1 ∼ | · |2 iff there exists some α ∈ (0, 1] such that |x|α1 = |x|2 or |x|α2 = |x|1 for all x ∈ Q
such that x 6= 0. Such an equivalence class of absolute values is called a place, and it turns out that two
absolute values belong to the same place iff their completions are topologically equivalent. This translates
an a priori topological problem to an algebraic one, except that we shall first need a geometric account of
real exponentiation.

Theorem A. There exists an exponentiation map on the Dedekinds

exp: (0,∞)× R! (0,∞), (7)

satisfying the usual exponent laws

xζ+ζ
′

= xζxζ
′
, x0 = 1

xζ·ζ
′

= (xζ)ζ
′
, x1 = x (8)

(xy)ζ = xζyζ , 1ζ = 1.

The result itself is not surprising; the main challenge in the construction are the technical constraints im-
posed by geometricity. Just as we cannot take the underlying set of Spec(Z), we may not take the underlying
set of the Dedekinds and treat exponentiation as a purely algebraic construction on its elements. Further,
exponentiation xζ is monotonic in the exponent when x ∈ (1,∞) whereas it is antitonic in the exponent
when x ∈ (0, 1). This indicates a natural case-splitting on the base, which requires careful justification
since, working geometrically, we generally cannot assume the Law of Excluded Middle.

Something interesting that already emerges at this stage are the so-called one-sided reals, which are
essentially semi-continuous versions of the usual Dedekinds. Note: while the points of the Dedekinds and
one-sided reals more or less coincide classically11, they are very different entities in geometric mathematics.
Here, the one-sided reals serve primarily as computational tools: our general approach involves developing
exponentiation for the one-sideds, before lifting the result to the Dedekinds. A similar approach is adopted
when developing a geometric account of logarithms:

Theorem B. Fix b ∈ (1,∞). We can then define one-sided logarithm maps12

logb :
−−−!
[0,∞]!

−−−−−−!
[−∞,∞] and logb :

 −−−
[0,∞]!

 −−−−−−
[−∞,∞] (9)

10Why the comparison between ultraproducts of models with the generic model? The short answer: because both constructions,
properly understood, lead to representative models of their first-order theories. The case for the generic model is clear given the
fact that it is conservative. The case for the ultraproduct construction is more involved — see [Mal19] for details, particularly the
discussion on regular ultrapowers and Keisler’s Order.

11For the sake of argument, let us presently ignore the one-sided infinities.
12Convention: intervals of one-sided reals are indicated with an arrow on top, indicating the direction of the Scott topology with

respect to the numerical order.
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inverse to the corresponding exponentiation maps b(—) on the one-sideds. These combine to yield an iso-
morphism on the Dedekinds

logb : (0,∞)
∼
−! (−∞,∞). (10)

These results have been published in the paper [NV22].

Step Two: Investigation of Absolute Values. The next step in tackling Problem 5 is to construct the topos of
absolute values and provide a geometric proof of Ostrowski’s Theorem. As before, we shall prove the result
for the one-sided reals (in fact, just the upper reals) and the Dedekinds, but now the one-sided reals take on
a conceptual significance.

Theorem C (Ostrowski’s Theorem for Z). As our setup, denote:

•
 −−
[av] := The space of absolute values on Z, valued in upper reals.
• ISpec(Z) := The space of prime ideals of Z.
•
 −−−−−
[−∞, 1] := The space of upper reals bounded above by 1.

Define
PΛ := {(p, λ) ∈ ISpec(Z)×

 −−−−−
[−∞, 1]

∣∣ λ < 0↔ ∃a ∈ Z6=0.(a ∈ p)}. (11)
Then, we get the following isomorphism of spaces:

 −−
[av] ∼= PΛ. (12)

Theorem D (Ostrowski’s Theorem for Q). As our setup,
• Let | · | be a non-trivial absolute value on Q;
• Let | · |∞ be the standard Euclidean absolute value, whose completion of Q yields the reals R;
• Let | · |p be the standard p-adic absolute value, whose completion of Q yields the p-adic field Qp.

Then, one of the following must hold:
(i) | · | = | · |α∞ for some α ∈ (0, 1]; or

(ii) | · | = | · |αp for some α ∈ (0,∞) and some prime p ∈ N+.

Setting aside the issues of geometricity, let us highlight the differences between Theorems C and D.
Theorem D, which is the standard formulation of Ostrowski’s Theorem, is a classification result on the
absolute values on Q. Since an absolute value | · | on Q is obviously determined by where it sends the
non-zero integers Z, this suggests a natural extension of Ostrowski’s Theorem for absolute values defined
on Z, which gives Theorem C. Notice that Theorem C as formulated is not just a classification result but
also a representation result: not only can we associate any absolute value | · | on Z to a pair (p, λ) ∈ PΛ, but
this association is also unique.

There is, however, a deeper point to be made. When defining the theory of absolute values on Z

| · | : Z!
 −−−
[0,∞)

we defined them as multiplicative seminorms valued in the upper reals; on the other hand, we chose to
define absolute values on Q as being valued in the Dedekinds. Geometricity shows this to be canonical. In
particular, if we wish to define absolute values valued in upper reals, then we lose the ability to axiomatise
positive definiteness13 and so are forced to consider just the multiplicative seminorms on Z; conversely, if
we wish to define absolute values on Q, then they must be valued in Dedekinds instead of the upper reals,
which can be shown to give us positive definiteness for free.

These results have been written up in the paper [NV23].

Stepping back for a moment: the idea of a space whose points correspond to multiplicative seminorms,
such as

 −−
[av], is not new (see e.g. [Ber90]). What is new is the tight connection with the upper reals, revealing

a subtle interplay between the topology and algebra that was previously hidden. In a slightly more classical
interlude, we extend this insight to sharpen a foundational result in Berkovich geometry. In our language,

13We call | · | positive definite if |x| = 0 iff x = 0. The reverse implication always holds, but the forward implication need not
since | · | may send non-zero elements to 0.
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Theorem E (Berkovich’s Disc Theorem). Fix K to be an algebraically closed field complete with respect
to a non-Archimedean norm. Define A to be a ring of convergent power series, i.e.

A := K{R−1T} =

{
f =

∞∑
i=0

ciT
i

∣∣∣∣∣ ci ∈ K, lim
i!∞
|ci|Ri = 0

}
, (13)

and define its Berkovich Spectrum M(A) to be the space of bounded multiplicative seminorms on A.
Then, the space M(A) is classically equivalent to the space of R-good filters.

There is a hidden surprise here for the expert. Berkovich’s original result holds that all points of M(A)
can be described as nested descending sequences of rigid discs so long as the norm on K is non-trivial.
It is well-known that his argument breaks down when we consider trivially-valued K. However, by using
point-free techniques from [Vic05, Vic09], we found the correct modification of rigid discs and were thus
able to eliminate the non-triviality hypothesis from Berkovich’s result. Not only does this tighten the com-
parison between the classical Ostrowski’s Theorem and Berkovich’s Disc Theorem (for reasons we explain
in the thesis, but also in our paper [Ng23b]), it also shows that the previous algebraic hypothesis of K
being non-trivially valued is in fact a point-set hypothesis, and is not essential to the underlying mathemat-
ics. The surprising aspects of this result hints at the clarifying potential of the point-free techniques (even
when applied classically), and motivates a very interesting series of test problems on their interactions with
non-Archimedean geometry, which we discuss. We were particularly encouraged by the model theorists’
breakthroughs in Berkovich Geometry [HL16], which gives further impetus for clarifying the conceptual
connections between the model theorist’s and topos theorist’s perspective on logic.

Step Three: Topos of Places of Q. An important payoff for working geometrically is that, leveraging The-
orem 2, we have at our disposal a deep collection of structure theorems for toposes, such as descent, that
allows us to extract topological information from our logical setup.

This motivates our work here, which investigates the topos of places of Q. Here we explore the question:
considered as a point-free space, what do the places of Q “look” like? A central theme is that while it
is clear that the exponentiation of absolute values gives an algebraic action, characterising the point-free
spaces quotiented by this action is a subtler issue.

Applying the classification result of Theorem D, we first localise and define the topos of a single non-
Archimedean place, denoted D, associated to some prime p. By characterising D as an appropriate descent
topos, we get the following result:

Theorem F. D ' Set = S{∗}.

In other words, a single non-Archimedean place corresponds to a singleton {∗}, as one might expect
classically. However, here comes the big surprise. When we apply a similar analysis to the topos of the
Archimedean (i.e. the real) place, denoted D′, we instead get:

Theorem G. D′ ' S
 −−
[0, 1].

This result overturns a longstanding classical assumption in number theory. Instead of corresponding
to a singleton with no intrinsic features (as is assumed in, e.g. Arakelov geometry), Theorem G indicates
that the Archimedean place corresponds to a sort of blurred unit interval comprising the upper reals. For
the topos theorist: this difference reflects with the difference between the standard descent vs. lax descent
constructions in the 2-category of toposes Top.

As such, our understanding of the mechanics underlying Question 1 has started to shift. At this critical
juncture, we are still sorting through the implications of our results, but interesting fragments of the picture
have emerged. In the final sections of the thesis, we first give a topos-theoretic account on the differences
between the non-Archimedean vs. Archimedean place. In our language, whereas the non-Archimedean
place D eliminates all forms of non-trivial forking in its sheaves, upper-bound forking still persists in the
Archimedean place D′ [Ng23a, Conclusion 6.4.8]. More explicitly, all connected sheaves in D are homeo-
morphic to the base space (Figure 1a) but this is not true for D′, which supports a greater variety of sheafy
structures (Figure 1b). This gives a new and explicit understanding of the differences between standard vs.
lax descent constructions, of independent interest to the topos theorist.
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(A) Connected Sheaves of D (B) Connected Sheaf of D′ with forking

FIGURE 1

After which, we identify and discuss a key theme that has been hidden in plain sight in our investiga-
tions: namely, the interactions between the connected and the disconnected. This theme turns out to have
a surprisingly far reach. On the topos-theoretic side, we discuss how its relation to Theorem F brings into
focus an interesting limitation of classifying toposes, raising challenging questions about its intended role
in modern applications. On the number-theoretic side, notice that Theorems F and G only give a characteri-
sation of individual places and not of the entire space of places (much less the entire space of completions).
In fact, as we discuss, the question of how the Archimedean and non-Archimedean components fit together
is surprisingly subtle, and also appears bound up with questions about reconciling the connected with the
disconnected. Nonetheless, some very interesting parallels have emerged between our work and Clausen-
Scholze’s framework of Condensed Mathematics, particularly in regards to the differences between solidity
and p-liquidity. This gives us some useful clues on where to start looking for answers.
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