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What this talk is about
Set theory occasionally distorts the foundations of our mathematics, especially in its
interactions with topology.

We discuss a couple of examples of this from recent work, partially joint with Steve
Vickers.



Foundations in Berkovich Geometry



Not Having Enough Points

Complex algebraic geometry studies complex algebraic varieties1.

Punchline: These can be regarded as complex manifolds. Hence, they can be
studied using tools from complex analysis & differential geometry.

1 In fact, let us say: schemes of locally finite type.
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Not Having Enough Points

Complex algebraic geometry studies complex algebraic varieties1.

Punchline: These can be regarded as complex manifolds. Hence, they can be
studied using tools from complex analysis & differential geometry.

Question
Can we play the same game for algebraic varieties defined over fields K ̸= C?

1 In fact, let us say: schemes of locally finite type.
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Not Having Enough Points

A valued field (K , | · |) is called non-Archimedean if it satisfies the inequality:

|x + y| ≤ max{|x|, |y|} for all x, y ∈ K .
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Not Having Enough Points

A valued field (K , | · |) is called non-Archimedean if it satisfies the inequality:

|x + y| ≤ max{|x|, |y|} for all x, y ∈ K .

• If K is non-Archimedean, trying to naively view an algebraic variety over K as a
K-analytic manifold isn’t very helpful, since K is totally disconnected.

• Berkovich’s solution: Fill K with more points!
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Berkovich Spaces

Let (K , | · |) be a complete valued field, and K [T ] be the polynomial ring.

Multiplicative Seminorm
A multiplicative seminorm on D extending the norm of K is a map

| · |x : K [T ]→ R≥0

satisfying the following:

• |f + g|x ≤ |f |x + |g|x ∀, f , g ∈ K [T ]
• |fg|x = |f |x |g|x ∀, f , g ∈ K [T ]
• |a|x = |a| ∀a ∈ K
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Berkovich Spaces

Let (K , | · |) be a complete valued field, and K [T ] be the polynomial ring.

Berkovich Affine Line
The Berkovich Affine Line A1

Berk is a space defined as follows:

• Underlying set of A1
Berk = set of multiplicative seminorms on K [T ].

• Topology of A1
Berk = the Gel’fand topology, i.e. weakest topology such that

all maps of the form

ψf : A1
Berk −→ R≥0

| · |x 7−→ |f |x

are continuous, for any f ∈ K [T ].
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Motivation behind A1
Berk

Question
We wanted to fill K with more points . . . what does this have to do with
seminorms on K [T ]?

• When K = C, the Gelfand-Mazur Theorem says: A1
Berk
∼= C.

• When K is non-Archimedean, there are more points in A1
Berk than in K .

4



Motivation behind A1
Berk

Question
We wanted to fill K with more points . . . what does this have to do with
seminorms on K [T ]?

• When K = C, the Gelfand-Mazur Theorem says: A1
Berk
∼= C.

• When K is non-Archimedean, there are more points in A1
Berk than in K .

4



Classifying Points of Berkovich spaces

Let (K , | · |) be a complete non-Arch. valued field that is algebraically closed. A rigid disc
is a subset Dr(k) ⊂ K of the form

Dr(k) := {b ∈ K
∣∣ |b− k| ≤ r}.

Berkovich’s Classification Theorem
Suppose K is non-trivially valued. Then every point | · |x ∈ A1

Berk corresponds to
a nested sequence of discs

Dr1(k1) ⊇ Dr2(k2) ⊇ ... (1)

in the sense that
| · |x = lim

n→∞
| · |Dri (ki) (2)

where | · |Dr(k) is the multiplicative seminorm canonically associated to Dr(k).
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Classifying Points of Berkovich spaces

The same construction and result holds for other rings as well. Here’s another
important example:

• Let (K , | · |) be a complete non-Arch. field that is algebraically closed.
• Denote A := K{R−1T} to be ring of power series converging in radius R.
• DenoteM(A) to be the analogous space of multiplicative seminorms on A.

Berkovich’s Classification Theorem
Suppose K is non-trivially valued. Then, every point | · |x ∈M(A) is
approximated by a nested descending sequence of discs

Dr1(k1) ⊇ Dr2(k2) ⊇ ... (3)

in the same sense as before.
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On the hypothesis of “non-trivially valued”

The space of multiplicative seminorms is still well-defined even when K is trivially
valued.1

In fact, Berkovich [Ber90] gives an explicit description of these spaces,
depending on whether the radius of convergence R < 1 or R ≥ 1.

1That is, if |k| = 1 for all k ̸= 0 in K .
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valued.1 In fact, Berkovich [Ber90] gives an explicit description of these spaces,
depending on whether the radius of convergence R < 1 or R ≥ 1.

1That is, if |k| = 1 for all k ̸= 0 in K .

7



On the hypothesis of “non-trivially valued”

Question: So why assume K to be non-trivially valued?
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On the hypothesis of “non-trivially valued”

Question: So why assume K to be non-trivially valued?

” The second assumption [that K is non-trivially valued]
is necessary [...] if the norm on K is trivial, then there
are too few discs.

— Jonsson [Jon15]
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Perspective from Point-free Topology

Let us redefine the notion of rigid discs:

Formal Ball
Denote:

• KR := {k ∈ K | |k| ≤ R} for some positive real R > 0

• Q+ to be the set of positive rationals.

A formal ball is an element (k, q) ∈ KR × Q+. We shall represent this more
suggestively as Bq(k). In particular, we write:

Bq′(k′) ⊆ Bq(k) just in case |k − k′| < q ∧ q′ ≤ q.

Key Observation #1: Unlike rigid discs, the radius of formal balls are well-defined, i.e.
Bq′(k) = Bq(k′) implies q′ = q.
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Perspective from Point-free Topology

Also, instead of working with nested sequences of rigid discs, let us consider:

R-good Filter
A filter F of formal balls is an inhabited subset of KR × Q+ that is:

• Upward closed w.r.t ⊆
• Closed under pairwise intersections.

We call F an R-good filter if it also satisfies:

• For any k ∈ KR, and q ∈ Q+ such that R < q, Bq(k) ∈ F .

• If Bq(k) ∈ F , there exists Bq′(k′) ∈ F such that q′ < q.
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Perspective from Point-free Topology

Also, instead of working with nested sequences of rigid discs, let us consider:

R-good Filter
A filter F of formal balls is an inhabited subset of KR × Q+ that is:

• Upward closed w.r.t ⊆
• Closed under pairwise intersections.

We call F an R-good filter if it also satisfies:

• For any k ∈ KR, and q ∈ Q+ such that R < q, Bq(k) ∈ F .

• If Bq(k) ∈ F , there exists Bq′(k′) ∈ F such that q′ < q.

Key Observation #2: Given an R-good filter F , define radF := inf{q | Bq(k) ∈ F} to
be its radius. Notice 0 ≤ radF ≤ R.
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A Sharper Classification Theorem

Theorem (N.)
Setup:

• (K , | · |) is a complete non-Arch field that is algebraically closed – in
particular, we allow K to be trivially-valued.

• A := K{R−1T} is the ring of power series converging on radius R, and
M(A) is the associated space of multiplicative seminorms.

Then, the space of R-good filters is (classically) equivalent toM(A).

Slogan: The algebraic hypothesis of being non-trivially valued is in fact a point-set
hypothesis.
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New Methods & Old Friends

We can now give new (and shorter) proofs of familiar charaterisations of Berkovich
spectra:

Figure 1: LHS:M(A) when R < 1, RHS:M(A) when R ≥ 1.
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How did we get here?

In principle, this result could have been discovered much sooner — and yet it wasn’t.

The reason seems to be that the result belongs to the point-free perspective in an
essential way:

1) The use of formal balls reflect the localic perspective that it is the opens that are
the basic units for defining a space.

2) A topos can be regarded as a generalised space whose points are models of a
geometric theory: sometimes these points are algebraic widgets (e.g. groups, rings
etc.), sometimes these points are completely prime filters, sometimes both.
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The View from Topos Theory



On Logic & Topology

” Model theory rarely deals directly with topology; the
great exception is the theory of o-minimal structures,
where the topology arises naturally from an ordered
structure.

— E. Hrushovski and F. Loeser [HL16]

” While geometric logic can be treated as just another
logic, it is an unusual one. [...] To put it another way,
the geometric mathematics has an intrinsic continuity.

— S. Vickers [Vic14]
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What is a space?

Point-set Topology
• Point = An element of a set

• Space = A set of points, along with a collection of subsets satisfying
specific properties (“opens of a topology”).

Point-free Topology
• Point = A model of a geometric theory

• Space = The ‘World’ in which all models of the theory live (≈ a topos)
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Geometric Logic

Let Σ be a (many-sorted) first-order signature (or vocabulary).

• Formula: Let x⃗ be a finite vector of variables, each with a given sort. A geometric
formula in context x⃗ is a formula built up using symbols from Σ via the following
logical connectives: =, ⊤ (true), ∧ (finite conjunction),

∨
(arbitrary disjunction), ∃.

• Theory: A geometric theory over Σ is a set of axioms of the form

∀x⃗.(ϕ→ ψ),

where ϕ and ψ are geometric formulae.

Differences with classical logic
• Absence of negation ¬
• Allows for arbitrary (possibly infinite) disjunction
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Link with Topology

Special case: Propositional Theory
Suppose Σ is just a set of propositional symbols (in particular, no sorts).

• Geometric formulae are constructed from these symbols using ⊤, ∧,
∨

.

• A geometric theory over Σ is a set of axioms of the form ϕ→ ψ.

Localic Space
Recall the following perspective from point-free topology.

• Point = A model of a geometric theory

• Space = The ‘World’ in which all models of the theory live

If the geometric theory is propositional, we call the corresponding space a
localic space.

17



Geometric Theory of Reals

The propositional theory TR with propositional symbols Pq,r (with q, r ∈ Q, the rationals)
and the axioms:

• Pq,r ∧ Pq′,r′ ←→
∨
{Ps,t|max(q, q′) < s < t < min(r, r′)}

• ⊤ −→
∨
{Pq−ϵ,q+ϵ|q ∈ Q} for any 0 < ϵ ∈ Q.
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The Upper Reals

Theory of Upper Reals
Consider a subset R ⊂ Q. For suggestiveness, write “R < r” whenever r ∈ R.
Suppose R is subject to the axiom:

∀r ∈ Q.
(
R < r ←→ ∃r′ ∈ Q.(R < r′) ∧ (r′ < r)

)

Remark: Morally speaking, an upper real R corresponds to the right Dedekind section
of a real. More precisely, upper reals are classically equivalent the the usual Dedekind
reals, but intuitionistically they are different.
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The Upper Reals

Theory of Upper Reals
Consider a subset R ⊂ Q. For suggestiveness, write “R < r” whenever r ∈ R.
Suppose R is subject to the axiom:

∀r ∈ Q.
(
R < r ←→ ∃r′ ∈ Q.(R < r′) ∧ (r′ < r)

)
Remark: Morally speaking, an upper real R corresponds to the right Dedekind section
of a real. More precisely, upper reals are classically equivalent the the usual Dedekind
reals2, but intuitionistically they are different.

2At least, once we ignore the infinities.
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The Language of Filters

Question: Given a point x ∈ X in some space X , how does the family of open
neighbourhoods containing x look like from its POV?

Filter
For I an infinite set, F ⊂ P(I) is a filter on I when:

(i) A ⊆ B ⊆ I and A ∈ F implies B ∈ F .

(ii) A, B ∈ F implies A ∩ B ∈ F
(iii) I ∈ F .

• Call F a completely prime filter whenever⋃
k∈K

Ak ∈ F =⇒ ∃j ∈ K s.t. Aj ∈ F

where K is an arbitrary (possibly infinite) indexing set.
• Call F an ultrafilter if it has an opinion on all subsets of I:

For any subset S ⊆ I, either S ∈ F or I \ S ∈ F (but not both).

20
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Reals as Prime Filters vs. Ultrafilters
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Local-Global Principle

Question
Given a polynomial with Q-coefficients, say

Xn + Y n + Zn = 0 (n > 2),

does it have Q-solutions iff it has solutions over all the p-adics Qp and reals R?

Answer: Sometimes.
• Hasse-Minkowski Theorem: Quadratic forms have Q-solutions iff they have

solutions over all completions of Q.
• Counter-Examples:

• Lind-Reichardt: 2Y 2 = X4 − 17Z4

• Selmer: 3X3 + 4Y 3 + 5Z3 = 0
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Reconciling two worlds

“One weakness in the analogy between the collection of {Ks}s∈S for a compact
Riemann surface S and the collection {Qp, for prime numbers p, and R} is that [...]
no manner of squinting seems to be able to make R the least bit mistakeable
for any of the p-adic fields, nor are the p-adic fields Qp isomorphic for distinct p.

A major theme in the development of Number Theory has been to try to
bring R somewhat more into line with the p-adic fields; a major mystery is
why R resists this attempt so strenuously.”

— Barry Mazur [Maz93]
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Local-Global Principle

We would still like a device for reasoning about properties satisfied by all completions
of Q simultaneously.

Arakelov Geometry
Consider the 1-point compactification of Spec(Z): each prime p in Spec(Z)
corresponds to Qp, and a single point∞ at infinity corresponding to R.

What are the points of this space?

• p←→ A prime ideal of Z

• ∞ ←→ wtf ???
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The Geometric Perspective

Theorem (N.-Vickers)
(I) Any Non-Archimedean place of Q corresponds to a singleton {∗}.
(II) The Archimedean place of Q corresponds to

←−−
[0, 1], i.e. the space of upper

reals between 0 and 1.
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Another look at Non-Archimedean Geometry

Equivalent Characterisations of A1
Berk

Assume that K is a nice fielda. We may characterise A1
Berk equivalently as

(i) The space of multiplicative seminorms on K [T ];

(ii) A space whose points are defined by a sequence of nested closed discs
Dr1(k1) ⊇ Dr2(k2) ⊇ ... ;

(iii) Model Theory: The space of types over K , concentrating on A1
K , that are

“almost orthogonal to Γ”;

(iv) Potential Theory: A profinite R-tree.

a= Complete Non-Archimedean field, non-trivially valued & algebraically closed.
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Another look at Non-Archimedean Geometry

Equivalent Characterisations of A1
Berk

Assume that K is a nice fielda. We may characterise A1
Berk equivalently as

(i) The space of multiplicative seminorms on K [T ];

(ii) A space whose points are defined by a sequence of nested closed discs
Dr1(k1) ⊇ Dr2(k2) ⊇ ... ;

(iii) Model Theory: The space of types over K , concentrating on A1
K , that are

“almost orthogonal to Γ”;

(iv) Potential Theory: A profinite R-tree.

a= Complete Non-Archimedean field, non-trivially valued & algebraically closed.

Are these sketches of the same non-Archimedean elephant?
26



Model Theory vs. Topos Theory

Theorem (Hrushovski-Loeser [HL16])
The Berkovich analytification of a quasi-projective variety is locally contractible
and has the homotopy type of a finite simplicial complex.

Theorem (van der Put-Schneider [vdPS95])
Let X be an affinoid space over a complete non-Arch. non-trivial field K .

• The space of prime filters P(X) is isomorphic to the adic space of
valuations on the affinoid algebra O(X) of X .

• The maximal Hausdorff quotient spaceM(X) comprising the ultrafilters
on X corresponds to the Berkovich space (= valuations of rank 1).
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• The space of prime filters P(X) is isomorphic to the adic space of
valuations on the affinoid algebra O(X) of X .

• The maximal Hausdorff quotient spaceM(X) comprising the ultrafilters
on X corresponds to the Berkovich space (= valuations of rank 1).

27



By way of conclusion

Question: what is the role of set theory in topology?

1) Berkovich Geometry: As stated, Berkovich’s Classification theorem for
K{R−1T} fails for trivially valued K due to essentially point-set reasons.

2) Arithmetic Geometry: Classically, the Archimedean place of Q is treated as a
singleton because of the assumption that points correspond to elements of a set.

In different ways, we used the point-free perspective to pull these problems away from
the underlying set theory. Both results indicate a particular loss of information within
the classical setting. The implications involve but go beyond concerns about
constructivity, revealing a deep nerve connecting topology & algebra that had
previously been obscured.
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Proof of Theorem

Lax Descent Construction. Consider a 2-truncated simplicial topos E•:

E2 E1 E0

d̂2

d̂1

d̂0

d1

d0

s0

We can obtain a category LDesc(E•) as the coinserter for the diagram (subject to the
usual descent conditions). Its objects are pairs (F , θ), where:

• F is a sheaf of E0

• θ : d∗0F → d∗1 F is a morphism in E1 satisfying the unit and cocycle conditions.

Important: Unlike the standard descent topos, no requirement that θ is isomorphism!
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Proof of Theorem

Methodological challenge
As stated, the descent construction treats the topos as a category of objects,
rather than a generalised space of models. To reformulate this in the point-free
language, we decided to regard the sheaves as étale bundles, which keeps the
connection with the point-free perspective.
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Proof of Theorem

To prove the theorem, the basic plan of attack is to construct two functors

F : D′ S
←−−
[0, 1] : G

where D′ is the lax descent topos, and prove that they are inverse. The mathematical
devil lies in the details.

• G is induced by the fact that there exists a natural map from Dedekinds to upper
reals defined by forgetting the left Dedekind section.
• F is trickier, and involved constructing a technical lifting lemma, and showing that

sheaves over (0, 1] restricted to the rationals Q(0,1] (that obey the lax descent
conditions) also satisfy the conditions of the lemma.

31



References i

Vladimir Berkovich.
Spectral Theory and Analytic Geometry over Non-Archimedean Fields.
American Mathematical Society, 1990.

Ehud Hrushovski and François Loeser.
Non-archimedean Tame Topology and Stably Dominated Types.
Princeton University Press, 2016.

Mattias Jonsson.
Berkovich Spaces and Applications, volume 2119 of Lecture Notes in
Mathematics, chapter Dynamics on Berkovich Spaces in Low Dimensions,
pages 205–366.
Springer, 2015.

32



References ii

Barry Mazur.
On the passage from local to global in number theory.
Bulletin of the AMS, 29(1):14–50, 1993.

Ming Ng and Steven Vickers.
Point-free construction of real exponentiation.
Logical Methods in Computer Science, 2022.

Marius van der Put and Peter Schneider.
Points and topologies in rigid geometry.
Mathematische Annalen, 302(1):81–104, 1995.

33



References iii

Steven Vickers.
Locales and toposes as spaces.
In M Aiello, I E Pratt-Hartmann, and J F van Benthem, editors, Handbook of Spatial
Logics, pages 429–496. Springer, 2007.

Steven Vickers.
Continuity and geometric logic.
Journal of Applied Logic, 12(1):14–27, 2014.

Steven Vickers.
Generalized point-free spaces, pointwise.
arXiv:2206.01113, 2022.

34


	Foundations in Berkovich Geometry
	The View from Topos Theory

