

Set Theory vs. Topology

Foundations of Arithmetic & non-Archimedean Geometry

Ming Ng m.ng@qmul.ac.uk

Queen Mary, University of London

What this talk is about

Set theory occasionally distorts the foundations of our mathematics, especially in its interactions with topology.

We discuss a couple of examples of this from recent work, partially joint with Steve Vickers.

Foundations in Berkovich Geometry

Complex algebraic geometry studies complex algebraic varieties¹.

Punchline: These can be regarded as complex manifolds. Hence, they can be studied using tools from complex analysis & differential geometry.

¹In fact, let us say: schemes of locally finite type.

Complex algebraic geometry studies complex algebraic varieties¹.

Punchline: These can be regarded as complex manifolds. Hence, they can be studied using tools from complex analysis & differential geometry.

Question

Can we play the same game for algebraic varieties defined over fields $K \neq \mathbb{C}$?

¹In fact, let us say: schemes of locally finite type.

A valued field $(K, |\cdot|)$ is called **non-Archimedean** if it satisfies the inequality:

$$|x+y| \le \max\{|x|, |y|\}$$
 for all $x, y \in K$.

A valued field (K, $|\cdot|$) is called **non-Archimedean** if it satisfies the inequality:

 $|x+y| \leq \max\{|x|,|y|\} \qquad \text{for all } x,y \in \mathcal{K}.$

• If *K* is non-Archimedean, trying to naively view an algebraic variety over *K* as a *K*-analytic manifold isn't very helpful, since *K* is totally disconnected.

A valued field $(K, |\cdot|)$ is called **non-Archimedean** if it satisfies the inequality:

 $|x+y| \le \max\{|x|, |y|\}$ for all $x, y \in K$.

- If *K* is non-Archimedean, trying to naively view an algebraic variety over *K* as a *K*-analytic manifold isn't very helpful, since *K* is totally disconnected.
- Berkovich's solution: Fill K with more points!

Let $(K, |\cdot|)$ be a complete valued field, and K[T] be the polynomial ring.

Multiplicative Seminorm

A multiplicative seminorm on D extending the norm of K is a map

 $|\cdot|_x \colon K[T] \to \mathbb{R}_{\geq 0}$

satisfying the following:

- $|f+g|_x \leq |f|_x + |g|_x$ $\forall, f, g \in K[T]$
- $|fg|_x = |f|_x |g|_x$ $\forall, f, g \in K[T]$
- $|a|_x = |a|$ $\forall a \in K$

Let $(K, |\cdot|)$ be a complete valued field, and K[T] be the polynomial ring.

Berkovich Affine Line

The Berkovich Affine Line $\mathbb{A}^1_{\operatorname{Berk}}$ is a space defined as follows:

- Underlying set of \mathbb{A}^1_{Berk} = set of multiplicative seminorms on K[T].
- Topology of $\mathbb{A}^1_{\rm Berk}$ = the Gel'fand topology, i.e. weakest topology such that all maps of the form

$$\psi_f \colon \mathbb{A}^1_{\operatorname{Berk}} \longrightarrow \mathbb{R}_{\geq 0}$$
$$|\cdot|_x \longmapsto |f|_x$$

are continuous, for any $f \in K[T]$.

Let $(K, |\cdot|)$ be a complete valued field, and K[T] be the polynomial ring.

Berkovich Affine Line

The Berkovich Affine Line $\mathbb{A}^1_{\operatorname{Berk}}$ is a space defined as follows:

- Underlying <u>set</u> of $\mathbb{A}^1_{\text{Berk}} = \underline{\text{set}}$ of multiplicative seminorms on K[T].
- Topology of $\mathbb{A}^1_{\rm Berk}$ = the Gel'fand topology, i.e. weakest topology such that all maps of the form

$$\psi_f \colon \mathbb{A}^1_{\operatorname{Berk}} \longrightarrow \mathbb{R}_{\geq 0}$$
$$|\cdot|_x \longmapsto |f|_x$$

are continuous, for any $f \in K[T]$.

Question

We wanted to fill K with more points ... what does this have to do with seminorms on K[T]?

Question

We wanted to fill K with more points ... what does this have to do with seminorms on K[T]?

- When $K = \mathbb{C}$, the Gelfand-Mazur Theorem says: $\mathbb{A}^1_{\text{Berk}} \cong \mathbb{C}$.
- When K is non-Archimedean, there are more points in $\mathbb{A}^1_{\text{Berk}}$ than in K.

Classifying Points of Berkovich spaces

Let $(K, |\cdot|)$ be a complete non-Arch. valued field that is algebraically closed. A rigid disc is a <u>subset</u> $D_r(k) \subset K$ of the form

 $D_r(k) := \{b \in K \mid |b-k| \le r\}.$

Classifying Points of Berkovich spaces

Let $(K, |\cdot|)$ be a complete non-Arch. valued field that is algebraically closed. A rigid disc is a <u>subset</u> $D_r(k) \subset K$ of the form

 $D_r(k):=\{b\in K\,\big|\,|b-k|\leq r\}.$

Berkovich's Classification Theorem

Suppose *K* is non-trivially valued. <u>Then</u> every point $|\cdot|_x \in \mathbb{A}^1_{Berk}$ corresponds to a nested sequence of discs

$$D_{r_1}(k_1) \supseteq D_{r_2}(k_2) \supseteq \dots \tag{1}$$

in the sense that

$$|\cdot|_x = \lim_{n \to \infty} |\cdot|_{D_{r_i}(k_i)}$$

where $|\cdot|_{D_r(k)}$ is the multiplicative seminorm canonically associated to $D_r(k)$.

(2)

Classifying Points of Berkovich spaces

The same construction and result holds for other rings as well. Here's another important example:

- Let $(K, |\cdot|)$ be a complete non-Arch. field that is algebraically closed.
- Denote $A := K\{R^{-1}T\}$ to be ring of power series converging in radius *R*.
- Denote $\mathcal{M}(\mathcal{A})$ to be the analogous space of multiplicative seminorms on \mathcal{A} .

Zaiti s.f. lim lail Ri→O

The same construction and result holds for other rings as well. Here's another important example:

- Let $(K, |\cdot|)$ be a complete non-Arch. field that is algebraically closed.
- Denote $A := K\{R^{-1}T\}$ to be ring of power series converging in radius *R*.
- Denote $\mathcal{M}(\mathcal{A})$ to be the analogous space of multiplicative seminorms on \mathcal{A} .

Berkovich's Classification Theorem

Suppose K is non-trivially valued. Then, every point $|\cdot|_x \in \mathcal{M}(\mathcal{A})$ is approximated by a nested descending sequence of discs

$$D_{r_1}(k_1) \supseteq D_{r_2}(k_2) \supseteq \dots$$
 (3)

in the same sense as before.

The space of multiplicative seminorms is still well-defined even when K is trivially valued.¹ $\begin{bmatrix} K \\ z \\ \end{bmatrix} \xrightarrow{} V \xrightarrow{}$

¹That is, if |k| = 1 for all $k \neq 0$ in K.

The space of multiplicative seminorms is still well-defined even when K is trivially valued.¹ In fact, Berkovich [Ber90] gives an explicit description of these spaces, depending on whether the radius of convergence R < 1 or $R \ge 1$.

¹That is, if |k| = 1 for all $k \neq 0$ in K.

On the hypothesis of "non-trivially valued"

· Dr(K)= 26 | 11C-61=r3

Question: So why assume *K* to be non-trivially valued?

$$D_{\frac{1}{2}}(k) = D_{\frac{1}{2}}(k)$$

 $D_{\frac{1}{2}}(k) = D_{\frac{1}{2}}(k)$
 $D_{\frac{1}{2}}(k) = D_{\frac{1}{2}}(k)$

Question: So why assume *K* to be non-trivially valued?

The second assumption [that K is non-trivially valued] is necessary [...] if the norm on K is trivial, then there are too few discs.

- Jonsson [Jon15]

Perspective from Point-free Topology

Let us redefine the notion of rigid discs:

Formal Ball

Denote:

- $K_R := \{k \in K \mid |k| \le R\}$ for some positive real R > 0
- Q_+ to be the set of positive rationals.

A **formal ball** is an element $(k, q) \in K_R \times Q_+$. We shall represent this more suggestively as $B_q(k)$. In particular, we write:

 $B_{q'}(k') \subseteq B_q(k)$ just in case $|k - k'| < q \land q' \leq q$.

Perspective from Point-free Topology

Let us redefine the notion of rigid discs:

Formal Ball

Denote:

- $K_R := \{k \in K \mid |k| \le R\}$ for some positive real R > 0
- Q_+ to be the set of positive rationals.

A **formal ball** is an element $(k, q) \in K_R \times Q_+$. We shall represent this more suggestively as $B_a(k)$. In particular, we write:

$$B_{q'}(k') \subseteq B_q(k)$$
 just in case $|k - k'| < q \land q' \leq q$.

Key Observation #1: Unlike rigid discs, the radius of formal balls are well-defined, i.e. $B_{q'}(k) = B_q(k')$ implies q' = q.

Also, instead of working with nested sequences of rigid discs, let us consider:

R-good Filter

A filter \mathcal{F} of formal balls is an inhabited subset of $K_R \times Q_+$ that is: 6F

- Upward closed w.r.t \subset
- Closed under pairwise intersections.

Also, instead of working with nested sequences of rigid discs, let us consider:

R-good Filter

A filter \mathcal{F} of formal balls is an inhabited subset of $K_R \times Q_+$ that is:

- $\bullet~$ Upward closed w.r.t $\subseteq~$
- Closed under pairwise intersections.

We call \mathcal{F} an *R*-good filter if it also satisfies:

- For any $k \in K_R$, and $q \in Q_+$ such that R < q, $B_q(k) \in \mathcal{F}$.
- If $B_q(k) \in \mathcal{F}$, there exists $B_{q'}(k') \in \mathcal{F}$ such that q' < q.

Also, instead of working with nested sequences of rigid discs, let us consider:

R-good Filter

A filter \mathcal{F} of formal balls is an inhabited subset of $K_R \times Q_+$ that is:

- Upward closed w.r.t \subseteq
- Closed under pairwise intersections.

We call \mathcal{F} an *R*-good filter if it also satisfies:

- For any $k \in K_R$, and $q \in Q_+$ such that R < q, $B_q(k) \in \mathcal{F}$.
- If $B_q(k) \in \mathcal{F}$, there exists $B_{q'}(k') \in \mathcal{F}$ such that q' < q.

Key Observation #2: Given an *R*-good filter \mathcal{F} , define $\operatorname{rad}_{\mathcal{F}} := \inf\{q \mid B_q(k) \in \mathcal{F}\}$ to be its *radius*. Notice $0 \leq \operatorname{rad}_{\mathcal{F}} \leq R$.

Theorem (N.)

Setup:

- (*K*, | · |) is a complete non-Arch field that is algebraically closed in particular, we allow *K* to be trivially-valued.
- \$\mathcal{A}\$:= \$\mathcal{K}\$ {\$R^{-1}\$T\$} is the ring of power series converging on radius \$\mathcal{R}\$, and \$\mathcal{M}\$(\$\mathcal{A}\$) is the associated space of multiplicative seminorms.

<u>Then</u>, the space of *R*-good filters is (classically) equivalent to $\mathcal{M}(\mathcal{A})$.

Theorem (N.)

Setup:

- (*K*, | · |) is a complete non-Arch field that is algebraically closed in particular, we allow *K* to be trivially-valued.
- \$\mathcal{A}\$:= \$\mathcal{K}\$ {\$R^{-1}\$T\$} is the ring of power series converging on radius \$\mathcal{R}\$, and \$\mathcal{M}\$(\$\mathcal{A}\$) is the associated space of multiplicative seminorms.

<u>Then</u>, the space of *R*-good filters is (classically) equivalent to $\mathcal{M}(\mathcal{A})$.

Slogan: The algebraic hypothesis of being non-trivially valued is in fact a point-set hypothesis.

We can now give new (and shorter) proofs of familiar charaterisations of Berkovich

spectra:

$$Fa: \begin{array}{c} B_{q} \text{ dg} \text{ dg} \text{ dg} \text{ K}_{R} \times \mathbb{Q}_{+} \\ \text{ fk} \mid \text{ lk} \in \mathbb{R}^{3} \\ 0 \\ R \\ \end{array}$$

Figure 1: LHS: $\mathcal{M}(\mathcal{A})$ when R < 1, RHS: $\mathcal{M}(\mathcal{A})$ when $R \ge 1$.

The reason seems to be that the result belongs to the point-free perspective in an essential way:

The reason seems to be that the result belongs to the point-free perspective in an essential way:

1) The use of formal balls reflect the localic perspective that it is the **opens** that are the basic units for defining a space.

The reason seems to be that the result belongs to the point-free perspective in an essential way:

- 1) The use of formal balls reflect the localic perspective that it is the **opens** that are the basic units for defining a space.
- 2) A topos can be regarded as a generalised space whose points are models of a geometric theory:

The reason seems to be that the result belongs to the point-free perspective in an essential way:

- 1) The use of formal balls reflect the localic perspective that it is the **opens** that are the basic units for defining a space.
- 2) A topos can be regarded as a generalised space whose points are models of a geometric theory: sometimes these points are algebraic widgets (e.g. groups, rings etc.), sometimes these points are completely prime filters, sometimes both.

The View from Topos Theory

Model theory rarely deals directly with topology; the great exception is the theory of o-minimal structures, where the topology arises naturally from an ordered structure.

- E. Hrushovski and F. Loeser [HL16]

While geometric logic can be treated as just another logic, it is an unusual one. [...] To put it another way, the geometric mathematics has an intrinsic continuity. - S. Vickers [Vic14]

Point-set Topology

- Point = An element of a set
- Space = A set of points, along with a collection of subsets satisfying specific properties ("opens of a topology").

Point-free Topology

- Point = A model of a geometric theory
- Space = The 'World' in which all models of the theory live (\approx a topos)

Point-set Topology

- Point = An element of a <u>set</u>
- Space = A set of points, along with a collection of subsets satisfying specific properties ("opens of a topology").

Point-free Topology

- Point = A model of a geometric theory
- Space = The 'World' in which all models of the theory live (\approx a **topos**)

Geometric Logic

Let Σ be a (many-sorted) first-order signature (or vocabulary).

Geometric Logic

Let Σ be a (many-sorted) first-order signature (or vocabulary).

Formula: Let x be a finite vector of variables, each with a given sort. A geometric formula in context x is a formula built up using symbols from Σ via the following logical connectives: =, ⊤ (true), ∧ (finite conjunction), ∨ (arbitrary disjunction), ∃.

Geometric Logic

Let Σ be a (many-sorted) first-order signature (or vocabulary).

- Formula: Let x be a finite vector of variables, each with a given sort. A geometric formula in context x is a formula built up using symbols from Σ via the following logical connectives: =, ⊤ (true), ∧ (finite conjunction), ∨ (arbitrary disjunction), ∃.
- Theory: A geometric theory over Σ is a set of axioms of the form

$$\forall \vec{x}.(\phi \rightarrow \psi)$$
,

where ϕ and ψ are geometric formulae.

Differences with classical logic

- Absence of negation \neg
- Allows for arbitrary (possibly infinite) disjunction

Link with Topology

Special case: Propositional Theory

Suppose Σ is just a set of propositional symbols (in particular, no sorts).

- Geometric formulae are constructed from these symbols using \top , \land , \bigvee .
- A geometric theory over Σ is a set of axioms of the form $\phi \rightarrow \psi$.

Localic Space

Recall the following perspective from point-free topology.

- Point = A model of a geometric theory
- Space = The 'World' in which all models of the theory live

If the geometric theory is propositional, we call the corresponding space a **localic space**.

$$(\gamma, \iota)$$

The propositional theory $T_{\mathbb{R}}$ with propositional symbols $P_{q,r}$ (with $q, r \in \mathbb{Q}$, the rationals) and the axioms:

Theory of Upper Reals

Consider a subset $R \subset \mathbb{Q}$. For suggestiveness, write "R < r" whenever $r \in R$. Suppose R is subject to the axiom:

$$\forall r \in \mathbb{Q}. (R < r \longleftrightarrow \exists r' \in \mathbb{Q}. (R < r') \land (r' < r))$$

Theory of Upper Reals

Consider a subset $R \subset \mathbb{Q}$. For suggestiveness, write "R < r" whenever $r \in R$. Suppose R is subject to the axiom:

$$\forall r \in \mathbb{Q}. \left(R < r \longleftrightarrow \exists r' \in \mathbb{Q}. (R < r') \land (r' < r) \right)$$

Remark: Morally speaking, an upper real *R* corresponds to the right Dedekind section of a real.

Theory of Upper Reals

Consider a subset $R \subset \mathbb{Q}$. For suggestiveness, write "R < r" whenever $r \in R$. Suppose R is subject to the axiom:

$$\forall r \in \mathbb{Q}. (R < r \longleftrightarrow \exists r' \in \mathbb{Q}. (R < r') \land (r' < r))$$

Remark: Morally speaking, an upper real *R* corresponds to the right Dedekind section of a real. More precisely, upper reals are *classically* equivalent the the usual Dedekind reals², but *intuitionistically* they are different.

²At least, once we ignore the infinities.

The Language of Filters

Question: Given a point $x \in X$ in some space X, how does the family of open neighbourhoods containing x look like from its POV?

```
Filter
```

```
For I an infinite set, \mathcal{F} \subset \mathcal{P}(I) is a filter on I when:
```

```
(i) A \subseteq B \subseteq I and A \in \mathcal{F} implies B \in \mathcal{F}.
```

```
(ii) A, B \in \mathcal{F} implies A \cap B \in \mathcal{F}
```

(iii) $l \in \mathcal{F}$.

The Language of Filters

Filter

```
For I an infinite set, \mathcal{F} \subset \mathcal{P}(I) is a filter on I when:
```

```
(i) A \subseteq B \subseteq I and A \in \mathcal{F} implies B \in \mathcal{F}.
```

```
(ii) A, B \in \mathcal{F} implies A \cap B \in \mathcal{F}
```

(iii) $l \in \mathcal{F}$.

 $\bullet~\mbox{Call}~\mathcal{F}$ a completely prime filter whenever

$$\bigcup_{k\in K} A_k \in \mathcal{F} \implies \exists j \in K \text{ s.t. } A_j \in \mathcal{F}$$

where K is an arbitrary (possibly infinite) indexing set.

Call *F* an ultrafilter if it has an opinion on all subsets of *l*:
 For any subset *S* ⊆ *l*, either *S* ∈ *F* or *l* \ *S* ∈ *F* (but not both).

Reals as Prime Filters vs. Ultrafilters

· Redding Red: (L, R)

type = & mmx. consident set of Jonda 3. li " >a"

Local-Global Principle

Question

Given a polynomial with \mathbb{Q} -coefficients, say

$$X^n + Y^n + Z^n = 0$$
 (n > 2),

does it have \mathbb{Q} -solutions iff it has solutions over all the *p*-adics \mathbb{Q}_p and reals \mathbb{R} ?

Local-Global Principle

Question

Given a polynomial with \mathbb{Q} -coefficients, say

$$X^n + Y^n + Z^n = 0$$
 (n > 2),

does it have \mathbb{Q} -solutions iff it has solutions over all the *p*-adics \mathbb{Q}_p and reals \mathbb{R} ?

Answer: Sometimes.

- Hasse-Minkowski Theorem: Quadratic forms have Q-solutions iff they have solutions over all completions of Q.
- Counter-Examples:
 - Lind-Reichardt: $2Y^2 = X^4 17Z^4$
 - Selmer: $3X^3 + 4Y^3 + 5Z^3 = 0$

"One weakness in the analogy between the collection of $\{K_s\}_{s\in S}$ for a compact Riemann surface S and the collection $\{\mathbb{Q}_p, \text{ for prime numbers } p, \text{ and } \mathbb{R}\}$ is that [...] **no manner of squinting seems to be able to make** \mathbb{R} **the least bit mistakeable for any of the** p-**adic fields**, nor are the p-adic fields \mathbb{Q}_p isomorphic for distinct p.

A major theme in the development of Number Theory has been to try to bring \mathbb{R} somewhat more into line with the *p*-adic fields; a major mystery is why \mathbb{R} resists this attempt so strenuously."

— Barry Mazur [Maz93]

Arakelov Geometry

Consider the 1-point compactification of $\operatorname{Spec}(\mathbb{Z})$: each prime p in $\operatorname{Spec}(\mathbb{Z})$ corresponds to \mathbb{Q}_p , and a single point ∞ at infinity corresponding to \mathbb{R} .

Arakelov Geometry

Consider the 1-point compactification of $\operatorname{Spec}(\mathbb{Z})$: each prime p in $\operatorname{Spec}(\mathbb{Z})$ corresponds to \mathbb{Q}_p , and a single point ∞ at infinity corresponding to \mathbb{R} .

What are the points of this space?

Arakelov Geometry

Consider the 1-point compactification of $\operatorname{Spec}(\mathbb{Z})$: each prime p in $\operatorname{Spec}(\mathbb{Z})$ corresponds to \mathbb{Q}_p , and a single point ∞ at infinity corresponding to \mathbb{R} .

What are the points of this space?

• $p \longleftrightarrow A$ prime ideal of \mathbb{Z}

Arakelov Geometry

Consider the 1-point compactification of $\operatorname{Spec}(\mathbb{Z})$: each prime p in $\operatorname{Spec}(\mathbb{Z})$ corresponds to \mathbb{Q}_p , and a single point ∞ at infinity corresponding to \mathbb{R} .

What are the points of this space?

- $p \longleftrightarrow A$ prime ideal of \mathbb{Z}
- $\bullet \ \infty \longleftrightarrow$

Arakelov Geometry

Consider the 1-point compactification of $\operatorname{Spec}(\mathbb{Z})$: each prime p in $\operatorname{Spec}(\mathbb{Z})$ corresponds to \mathbb{Q}_p , and a single point ∞ at infinity corresponding to \mathbb{R} .

What are the points of this space?

- $p \longleftrightarrow A$ prime ideal of \mathbb{Z}
- $\infty \longleftrightarrow \mathsf{wtf}$???

The Geometric Perspective

Theorem (N.-Vickers)

- (I) Any Non-Archimedean place of $\mathbb Q$ corresponds to a singleton $\{*\}.$
- (II) The Archimedean place of \mathbb{Q} corresponds to $\overleftarrow{[0,1]}$, i.e. the space of upper reals between 0 and 1.

Another look at Non-Archimedean Geometry

Equivalent Characterisations of $\mathbb{A}_{\mathrm{Berk}}^1$

Assume that K is a nice field^{*a*}. We may characterise $\mathbb{A}^{1}_{\text{Berk}}$ equivalently as

- (i) The space of multiplicative seminorms on K[T];
- (ii) A space whose points are defined by a sequence of nested closed discs $D_{r_1}(k_1) \supseteq D_{r_2}(k_2) \supseteq ...;$

Another look at Non-Archimedean Geometry

Equivalent Characterisations of $\mathbb{A}^1_{\text{Bark}}$

Assume that K is a nice field^{*a*}. We may characterise $\mathbb{A}^{1}_{\text{Bark}}$ equivalently as

- (i) The space of multiplicative seminorms on K[T];
- (ii) A space whose points are defined by a sequence of nested closed discs $D_{r_1}(k_1) \supseteq D_{r_2}(k_2) \supseteq \dots;$
- (iii) **Model Theory:** The space of types over K, concentrating on $\mathbb{A}^1_{\mathcal{V}}$, that are "almost orthogonal to Γ "; semi-la

ملا

(iv) **Potential Theory**: A profinite \mathbb{R} -tree.

^a= Complete Non-Archimedean field, non-trivially valued & algebraically closed.

Another look at Non-Archimedean Geometry

Equivalent Characterisations of $\mathbb{A}_{\mathrm{Berk}}^1$

Assume that K is a nice field^{*a*}. We may characterise $\mathbb{A}^{1}_{\text{Berk}}$ equivalently as

- (i) The space of multiplicative seminorms on K[T];
- (ii) A space whose points are defined by a sequence of nested closed discs $D_{r_1}(k_1) \supseteq D_{r_2}(k_2) \supseteq ...;$
- (iii) **Model Theory**: The space of types over K, concentrating on \mathbb{A}^1_K , that are "almost orthogonal to Γ ";
- (iv) Potential Theory: A profinite \mathbb{R} -tree.

Are these sketches of the same non-Archimedean elephant?

 $^{^{}a}$ = Complete Non-Archimedean field, non-trivially valued & algebraically closed.

Model Theory vs. Topos Theory

Theorem (Hrushovski-Loeser [HL16])

The Berkovich analytification of a quasi-projective variety is locally contractible and has the homotopy type of a finite simplicial complex.

Model Theory vs. Topos Theory

Theorem (Hrushovski-Loeser [HL16])

The Berkovich analytification of a quasi-projective variety is locally contractible and has the homotopy type of a finite simplicial complex.

Theorem (van der Put-Schneider [vdPS95])

Let X be an affinoid space over a complete non-Arch. non-trivial field K.

- The space of **prime filters** $\mathcal{P}(X)$ is isomorphic to the **adic space** of valuations on the affinoid algebra $\mathcal{O}(X)$ of *X*.
- The maximal Hausdorff quotient space $\mathcal{M}(X)$ comprising the **ultrafilters** on *X* corresponds to the **Berkovich space** (= valuations of rank 1).

Question: what is the role of set theory in topology?

Berkovich Geometry: As stated, Berkovich's Classification theorem for *K*{*R*⁻¹*T*} fails for trivially valued *K* due to essentially point-set reasons.
 Arithmetic Geometry: Classically, the Archimedean place of Q is treated as a singleton because of the assumption that points correspond to elements of a set.

Question: what is the role of set theory in topology?

Berkovich Geometry: As stated, Berkovich's Classification theorem for *K*{*R*⁻¹*T*} fails for trivially valued *K* due to essentially point-set reasons.
 Arithmetic Geometry: Classically, the Archimedean place of Q is treated as a singleton because of the assumption that points correspond to elements of a set.

In different ways, we used the point-free perspective to pull these problems away from the underlying set theory. Both results indicate a particular loss of information within the classical setting. The implications involve but go beyond concerns about constructivity, revealing a deep nerve connecting topology & algebra that had previously been obscured.

Proof of Theorem

Lax Descent Construction. Consider a 2-truncated simplicial topos \mathcal{E}_{\bullet} :

We can obtain a category **LDesc**(\mathcal{E}_{\bullet}) as the coinserter for the diagram (subject to the usual descent conditions). Its objects are pairs (F, θ), where:

- F is a sheaf of \mathcal{E}_0
- $\theta: d_0^*F \to d_1^*F$ is a morphism in \mathcal{E}_1 satisfying the unit and cocycle conditions.

Important: Unlike the standard descent topos, **no requirement** that θ is **isomorphism**!

Methodological challenge

As stated, the descent construction treats the topos as a category of objects, rather than a generalised space of models. To reformulate this in the point-free language, we decided to regard the sheaves as étale bundles, which keeps the connection with the point-free perspective.

Proof of Theorem

To prove the theorem, the basic plan of attack is to construct two functors

where \mathcal{D}' is the lax descent topos, and prove that they are inverse. The mathematical devil lies in the details.

- *G* is induced by the fact that there exists a natural map from Dedekinds to upper reals defined by forgetting the left Dedekind section.
- F is trickier, and involved constructing a technical lifting lemma, and showing that sheaves over (0, 1] restricted to the rationals Q_{(0,1]} (that obey the lax descent conditions) also satisfy the conditions of the lemma.

References i

Vladimir Berkovich.

Spectral Theory and Analytic Geometry over Non-Archimedean Fields. American Mathematical Society, 1990.

- Ehud Hrushovski and François Loeser. Non-archimedean Tame Topology and Stably Dominated Types. Princeton University Press, 2016.
- 📔 Mattias Jonsson.

Berkovich Spaces and Applications, volume 2119 of Lecture Notes in Mathematics, chapter Dynamics on Berkovich Spaces in Low Dimensions, pages 205–366. Springer, 2015.

References ii

Barry Mazur.

On the passage from local to global in number theory. *Bulletin of the AMS*, 29(1):14–50, 1993.

Ming Ng and Steven Vickers.
 Point-free construction of real exponentiation.
 Logical Methods in Computer Science, 2022.

Marius van der Put and Peter Schneider.
 Points and topologies in rigid geometry.
 Mathematische Annalen, 302(1):81–104, 1995.

References iii

Steven Vickers.

Locales and toposes as spaces.

In M Aiello, I E Pratt-Hartmann, and J F van Benthem, editors, *Handbook of Spatial Logics*, pages 429–496. Springer, 2007.

Steven Vickers.

Continuity and geometric logic.

Journal of Applied Logic, 12(1):14-27, 2014.

🔋 Steven Vickers.

Generalized point-free spaces, pointwise.

arXiv:2206.01113, 2022.