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What this talk is about

I’m going to discuss two basic themes:
1. In what sense are Grothendieck toposes generalised spaces?
2. When can we solve a problem by breaking it into smaller pieces?

I’ll then discuss how the research project ‘Adelic Geometry via Topos
Theory’ serves as an interesting test problem for illuminating how
these two themes interact with each other.

Ming Ng |



2

Point-free Topology - A Bird’s Eye View

Point-set Topology
I Point = Element of a set
I Space = A set of points, along with a set of opens satisfying

some specific axioms.
I Continuous Maps = A function f : X → Y that preserves certain

structure

Pointfree Topology

I Point = Model of a geometric theory
I Space = The ‘World’ in which the point lives with other points i.e.

a Grothendieck topos E
I Continuous Maps = A geometric morphism f : E → F that

preserves certain structure
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Example: Theory of Dedekind Reals

As an example, consider the geometric theory of Dedekind reals,
which we denote R.

A model x of R is a Dedekind real number, which
will be represented by two sets of rationals (L,R), whereby:

L = {q ∈ Q|q < x}

R = {r ∈ Q|x < r}

Otherwise known as the left and right Dedekind sections of the real
number.
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Topos = Generalised Space

Theorem
Every Grothendieck topos ‘classifies’ the models of some theory T,
and every geometric theory T is ‘classified’ by some Grothendieck
topos.

Slogan
Models = points of a topos.

In particular, we can reason in terms of
the points of the topos (as a generalised space) as opposed to just
reasoning in terms of its objects/sheaves (as a category).
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Generic Model
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‘Divide-and-Conquer’

X n + Y n + Z n = 0 (n > 2)

I Question: What are the rational (equiv. integer) solutions to this
polynomial? — hard!

I Observation #1: Integer solutions imply real and modulo p
solutions (in fact p-adic solutions).

I Observation #2: Real and p-adic solutions are easier to deal with
than just integer/rational solutions.

I New Question: Given a polynomial with Q-coefficients, when
does knowledge about its Qp and R-solutions give us info about
its Q-solutions?
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Hasse’s Local-Global Principle

Local-Global Principle for Q
Some property P is true for Q iff P is true for all the completions of Q.

Definition of adele ring for Q
The adele ring AQ is defined to be the restricted product of all the
completions of Q. Morally, the adele ring can be viewed as a device
that allows us to reason about all the completions of Q
simultaneously.

Idea
Instead of asking whether a property simultaneously holds for all
completions of Q (which forces us to use complicated algebraic
constructions like the adele ring AQ), what if we asked whether a
property holds for the generic completion of Q?
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Investigation begins...

Starting point:

For simplicity, let us assume that our base field is Q. Classically, an
absolute value of Q is a function | · | : Q→ R such that for all x , y ∈ Q:

I |x | ≥ 0, and |x | = 0 iff x = 0

I |xy | = |x ||y |
I |x + y | ≤ |x |+ |y |
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Investigation begins...

Starting point:

For simplicity, let us assume that our base field is Q. Classically, an
absolute value of Q is a function | · | : Q→ R such that for all x , y ∈ Q:

I |x | ≥ 0, and |x | = 0 iff x = 0
I |xy | = |x ||y |
I |x + y | ≤ |x |+ |y |

We define a place as an equivalence class of absolute values
whereby | · |1 ∼ | · |2 if there exists some α ∈ (0,1] such that
| · |1 = | · |α2 or | · |2 = | · |α1 .
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Classifying Topos of Places of Q

I Intuitively: what does this topos look like?
I The points of this topos would correspond to equivalence classes

of absolute values, such that:
1. | · |α ∼ | · |

2. | · |1 = | · |
3. (| · |α)β = | · |α·β

for any absolute value | · |, and α, β ∈ (0,1]

I In essence, we would like to ‘quotient’ the topos [av ] by an
algebraic action – two questions:
I Is the notion of (real) exponentiation geometric? Ng-Vickers (2021)

I What does it mean to quotient by a monoid action vs. group action?
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Preliminary Reorientations
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Preliminary Reorientations

Candidate Picture

D′ '
←−−−
[0,1]

I The Arakelov compactification of Spec(Z) suggests that we add a
single point at infinity to Spec(Z) corresponding to the
‘Archimedean prime’ . . .

our candidate picture suggests that
there is some blurring going on at infinity, and that infinity is not
just a classical point with no intrinsic structure.

Ming Ng |



12

Preliminary Reorientations

Candidate Picture

D′ '
←−−−
[0,1]

I The Arakelov compactification of Spec(Z) suggests that we add a
single point at infinity to Spec(Z) corresponding to the
‘Archimedean prime’ . . . our candidate picture suggests that
there is some blurring going on at infinity, and that infinity is not
just a classical point with no intrinsic structure.

Ming Ng |



13

By way of conclusion...

I Theme #1: Viewing toposes as a framework uniting logic and
topology

I Theme #2: Local-Global issues, and its connections to Theme
#1 via generic reasoning

I Pulling away from the set theory reveals key insights into the
deep nerve connecting topology and algebra (via descent theory)

I Some very interesting indications that there is some blurring at
infinity in our picture of Spec(Z) — interesting to explore the
precise implications of this.
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By way of conclusion...

‘One can hope for a very general method of reduction and ‘dévissage’
that transforms a problem of multiple variables into a problem of a
single variable, where the difficulty of the original problem is
transformed into a problem of working constructively.’

— André Boileau and André Joyal
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