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What this talk is about

I’m going to discuss two basic themes:
1. What does topology have to do with logic?
2. When can we solve a problem by breaking it into smaller pieces?

I’ll then discuss how the research project ‘Adelic Geometry via Topos
Theory’ serves as an interesting test problem for illuminating how
these two themes interact with each other.
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Homotopical Data = Geometric Data
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Homotopical Data = Geometric Data

▶ Question: Are these the only line bundles over S1 (up to
isomorphism)?

▶ Answer: Yes.
▶ Why? Exploit the tight relationship between [Sk−1,GLn(R)] and

Vectn(Sk ).
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Homotopical Data = Geometric Data

Classification Theorem
Suppose that X is a paracompact space. Then there exists a bijection

[X ,Gn] ∼= Vectn(X )

where Gn is the classifying space.
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Continuity = Geometricity

A similar attitude occurs in topos theory in regards to geometric logic:

— Vickers, ’Continuity and Geometric Logic’
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Geometric Logic

Let Σ be a (many-sorted) first-order signature. It comprises:
▶ A set of sorts.
▶ A set of function symbols, with finite arity.
▶ A set of relation symbols, again with finite arity.

Geometric Theory
A geometric theory T over Σ is a theory whose (formulae featured in
its) axioms are built out of certain logical connectives

— i.e. =, ⊤,
finite conjunctions ∧, arbitrary (possibly infinite) disjunctions

∨
, and

∃.
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Geometric Logic

Let Σ be a (many-sorted) first-order signature. It comprises:
▶ A set of sorts.
▶ A set of function symbols, with finite arity.
▶ A set of relation symbols, again with finite arity.

Special Case: Propositional Theory
In the special case where Σ has no sorts, then we call a geometric
theory T over Σ propositional —

in which case, its formulae are built
just out of propositional symbols, ∧,

∨
.
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Example: Dedekind Reals

From a logical POV, what are Dedekind reals?

▶ Classical (finitary) logic: Dedekind cuts arise as types of the
theory of dense linear orders on (Q, <).

▶ Geometric logic: Dedekind reals arise as models of a geometric
theory.
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Geometric Theory of Reals

The propositional theory TR with propositional symbols Pq,r (with
q, r ∈ Q, the rationals) and the axioms:
▶ Pq,r ∧ Pq′,r ′ ↔

∨
{Ps,t |max(q,q′) < s < t < min(r , r ′)}

▶ ⊤ →
∨
{Pq−ϵ,q+ϵ|q ∈ Q} for any 0 < ϵ ∈ Q.
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Types and Models as Filters

Question: Given a point x ∈ X in some space X ,

how does the family
of open neighbourhoods containing x look like from its POV?

Filter
For I an infinite set, F ⊂ P(I) is a filter on I when:

(i) A ⊆ B ⊆ I and A ∈ F implies B ∈ F .
(ii) A,B ∈ F implies A ∩ B ∈ F
(iii) ∅ /∈ F .
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Types and Models as Filters

Question: Given a point x ∈ X in some space X , how does the family
of open neighbourhoods containing x look like from its POV?

▶ Type: A partial type p over a model M corresponds to a filter on
M for the Boolean algebra of M-definable subsets of M. If p is an
ultrafilter, then we call p a (complete) type.

▶ Model of Propositional Theory: A propositional theory T can be
associated to its lattice LT of propositional formulae (modulo
provable equality).

The models of T are the completely prime filters of LT.
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Geometric Theory of Reals (Again)

Can we get a more direct axiomatisation of the Dedekind reals?

Classically, a Dedekind real is represented by L,R ⊂ Q, whereby:

L = {q ∈ Q|q < x}

R = {r ∈ Q|x < r}

Black Box: Suppose we can speak meaningfully of the rationals (and
its subsets) using geometric logic.

Question: What kind of properties should L,R ⊂ Q have so that they
represent Dedekind sections? Can these properties be formulated
via geometric logic?
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Theory of Upper Reals

Let’s start with just R ⊂ Q. What should it look like?

Axioms
1. x < r ′ < r → x < r .
2. x < r → ∃r ′ ∈ Q such that x < r ′ < r
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Geometric Theory of Dedekind Reals

The Dedekind sections (L,R) of the real number must satisfy the
following (geometric) axioms:

Axioms of R
1. ∃q ∈ Q such that q < x
2. q < q′ < x → q < x
3. q < x → ∃q′ ∈ Q such that q < q′ < x
4. ∃r ∈ Q such that x < r
5. x < r ′ < r → x < r .
6. x < r → ∃r ′ ∈ Q such that x < r ′ < r
7. q < x and x < q → false
8. q < r → q < x or x < r .
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Checkpoint: Quick Recap

▶ Slogan from Algebraic Topology (“Homotopical Data = Geometric
Data”)

Classification Theorem
Suppose that X is a paracompact space. Then there exists a bijection

[X ,Gn] ∼= Vectn(X )

where Gn is the classifying space.

▶ Slogan from Topos Theory (“Continuity = Geometricity”)
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Topos = Generalised Space

Toposes are originally defined as categories. In what sense then are
toposes generalised spaces?
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Generalised Maps = Generalised Points

Definition
▶ A geometric morphism f : F → E of toposes

is a pair of adjoint
functors f∗ : F → E and f ∗ : E → F , such that f ∗ preserves
arbitrary colimits and finite limits.

Definition
1. A global point of a topos E is defined as a geometric morphism

Set→ E .
2. A generalised point of a topos E is a geometric morphism F → E .
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Topos = Generalised Space

Definition
The classifying topos of a geometric theory T is a Grothendieck topos
Set[T] that classifies the models of T in Grothendieck toposes, i.e. for
any Grothendieck topos E , we have an equivalence of categories:

Geom(E ,Set[T]) ≃ T-mod(E)

Theorem
Every Grothendieck topos is a classifying topos of some geometric
theory T, and every geometric theory T has a classifying topos.

Slogan
Models = Points of a Topos.
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Point-free Topology - A Bird’s Eye View

Point-set Topology
▶ Point = Element of a set
▶ Space = A set of points, along with a collection of opens

satisfying some specific axioms.
▶ Continuous Maps = A function f : X → Y such that f−1(U) is

open for all opens U ⊂ Y

Pointfree Topology
▶ Point = Model of a geometric theory
▶ Space = The ‘World’ in which the point lives with other points (i.e.

a Grothendieck topos)
▶ Continuous Maps = A geometric morphism f : E → F such that

f ∗ : F → E preserves finite limits and small colimits
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The Abstract vs. The Concrete

“This tension between an abstract definition and a con-
crete construction is addressed in both Category Theory
and Model Theory.

Category Theory is directed at the removal of the importance
of a concrete construction. It provides a language to compare
different concrecte constructions and in addition provides a
very new way to construct objects [...] On the other hand,
Model theory is concentrated on the gap between an abstract
definition and a concrete construction.”

— Kazhdan, Lecture Notes in Motivic Integration.
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Generic Model

Fact
There exists a generic model UT living in every classifying topos,

which possesses the universal property that that any model M in a
Grothendieck topos E can be obtained as f ∗(UT) ∼= M via the inverse
image functor of some (unique) f : E → Set[T].

An important consequence of this is that any geometric sequent that
holds for UT will hold for all models M of T.
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Generic Model
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‘Divide-and-Conquer’

X n + Y n + Z n = 0 (n > 2)

▶ Question: What are the rational (equiv. integer) solutions to this
polynomial? — hard!

▶ Observation #1: Integer solutions imply real and modulo p
solutions (in fact p-adic solutions).

▶ Observation #2: Real and p-adic solutions are easier to deal with
than just integer/rational solutions.

▶ New Question: Given a polynomial with Q-coefficients, when
does knowledge about its Qp and R-solutions give us info about
its Q-solutions?
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Hasse’s Local-Global Principle

Local-Global Principle for Q
Some property P is true for Q iff P is true for all the completions of Q.

Definition of adele ring for Q
The adele ring AQ is defined to be the restricted product of all the
completions of Q. Morally, the adele ring can be viewed as a device
that allows us to reason about all the completions of Q
simultaneously.

Idea
Instead of asking whether a property simultaneously holds for all
completions of Q, what if we asked whether a property holds for the
generic completion of Q?
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Generic Completion

“One weakness in the analogy between the collection of
{Ks}s∈S for a compact Riemann surface S and the collection
{Qp, for prime numbers p, and R} is that [...] no manner of
squinting seems to be able to make R the least bit mistake-
able for any of the p-adic fields, nor are the p-adic fields Qp
isomorphic for distinct p.

A major theme in the development of Number Theory has
been to try to bring R somewhat more into line with the
p-adic fields; a major mystery is why R resists this attempt
so strenuously.”

— Mazur, ’Passage from Local to Global in Number Theory’
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Investigation begins...

Starting point:

For simplicity, let us assume that our base field is Q. Classically, an
absolute value of Q is a function | · | : Q→ R such that for all x , y ∈ Q:

▶ |x | ≥ 0, and |x | = 0 iff x = 0

▶ |xy | = |x ||y |
▶ |x + y | ≤ |x |+ |y |
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Investigation begins...

Starting point:

For simplicity, let us assume that our base field is Q. Classically, an
absolute value of Q is a function | · | : Q→ R such that for all x , y ∈ Q:

▶ |x | ≥ 0, and |x | = 0 iff x = 0
▶ |xy | = |x ||y |
▶ |x + y | ≤ |x |+ |y |

We define a place as an equivalence class of absolute values
whereby | · |1 ∼ | · |2 if there exists some α ∈ (0,1] such that
| · |1 = | · |α2 or | · |2 = | · |α1 .
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Classifying Topos of Places of Q

▶ Intuitively: what does this topos look like?
▶ The points of this topos would correspond to equivalence classes

of absolute values, such that:
1. | · |α ∼ | · |

for any absolute value | · |, and α ∈ (0,1]

[av ]× (0,1] [av ]
ex

π

▶ π is the projection map sending (| · |, α) 7→ | · |
▶ ex is the exponentiation map sending (| · |, α) 7→ | · |α

Ming Ng |
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Classifying Topos of Places of Q

▶ Intuitively: what does this topos look like?
▶ The points of this topos would correspond to equivalence classes

of absolute values, such that:
1. | · |α ∼ | · |

2. | · |1 = | · |
3. (| · |α)β = | · |α·β

for any absolute value | · |, and α, β ∈ (0,1]

▶ In essence, we would like to ‘quotient’ the topos [av ] by an
algebraic action – two questions:
▶ Is the notion of (real) exponentiation geometric? Ng-Vickers (2021)
▶ What does it mean to quotient by a monoid action vs. group action?
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Global vs. Local Picture

Ostrowski’s Theorem for Q
Every absolute value of Q is equivalent to a (non-Archimedean)
p-adic absolute value | · |p (for some prime p), or the Archimedean
absolute value | · |∞.
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Non-Archimedean Place (for fixed prime p)

[avNA]× (0,∞) [avNA] D

ex

π

s

▶ For any non-Arch. absolute | · |, exponentiating | · |α still yields a
non-Arch. absolute value for any α ∈ (0,∞) (unlike the
Archimedean case).

▶ What is D?

Theorem
D ≃ Set
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Archimedean Place

[avA]× (0,1] [avA] D′

m

π

s

▶ Space of Arch. absolute values is acted upon by a monoid
(0,1]-action as opposed to a group (0,∞)-action.

▶ Can we play the same game as we did in the Non-Archimedean
case? Answer: No! (The topos D′ has non-trivial forking in its
sheaves)

▶ So what is D′?
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Preliminary Reorientations
Number Theory

Candidate Picture

D′ ≃
←−−−
[0,1]

(the space of ‘upper reals’ between 0 and 1)
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Preliminary Reorientations
Number Theory

Candidate Picture

D′ ≃
←−−−
[0,1] (the space of Upper Reals between 0 and 1)

▶ The Arakelov compactification of Spec(Z) suggests that we add a
single point at infinity to Spec(Z) corresponding to the
‘Archimedean prime’ . . .

our candidate picture suggests that
there is some blurring going on at infinity, and that infinity is not
just a classical point with no intrinsic structure.
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Preliminary Reorientations
Homotopy Theory

Sullivan’s Arithmetic Square (a.k.a. ‘The Hasse Square’):

Z
∏

p Ẑp

Q Q⊗Z
∏

p Ẑp = Af
Q

. . . . . . Investigations into K -theoretic adeles, augmenting the Arithmetic Square such
that it includes R (joint work in progress with Scott Balchin).
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By way of conclusion...

▶ Theme #1: Viewing toposes as a framework uniting logic and
topology

▶ Theme #2: Local-Global issues, and its connections to Theme
#1 via generic reasoning

▶ Pulling away from the set theory reveals key insights into the
deep nerve connecting topology and algebra.

▶ Some very interesting indications that there is some blurring at
infinity in our picture of Spec(Z) — interesting to explore the
precise implications of this.
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