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Quote du Jour

‘Nobody would ever want to do a point-free construction of real
exponentiation - it would be too painful.’ - Thomas Streicher to Steve
Vickers.
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Point-free Topology
Overview

Point-set Topology
I Point = Element of a set

I Space = A set of points, along with a set of opens satisfying
some specific axioms.

I Continuous Maps = A function f : X → Y such that f−1(U) is
open for all opens U ⊂ Y

Pointfree Topology

I Point = Model of a geometric theory
I Space = The ‘World’ in which the point lives with other points (i.e.

a Grothendieck topos)
I Continuous Maps = A geometric morphism f : E → F such that

f ∗ : F → E preserves finite limits and small colimits
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Geometric Theory
Definition

Geometric Theory
Let Σ be a set of symbols.

I We build logical statements (i.e. ‘geometric formula’) from the
symbols in Σ using =, finite conjunctions ∧, arbitrary (possibly
infinite) disjunctions

∨
, and ∃.

I We then define geometric axioms of the form φ→ ψ, where φ
and ψ are geometric formulae.

I A geometric theory over Σ is a set of axioms of the form φ→ ψ,
where φ and ψ are geometric formulae.
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Geometric Theory
Example: Geometric Theory of Dedekind Reals

As an example, we now define the geometric theory of Dedekind
reals, which we denote R. A model x of R will is a Dedekind real
number, which will be represented by two sets of rationals (L,R),
whereby:

L = {q ∈ Q|q < x}

R = {r ∈ Q|x < r}

Otherwise known as the left and right Dedekind sections of the real
number.
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Geometric Theory
Example: Geometric Theory of Dedekind Reals

The Dedekind sections (L,R) of the real number must satisfy the
following (geometric) axioms:

Axioms of R
1. ∃q ∈ Q such that q < x
2. q < q′ < x → q < x
3. q < x → ∃q′ ∈ Q such that q < q′ < x
4. ∃r ∈ Q such that x < r
5. x < r ′ < r → x < r .
6. x < r → ∃r ′ ∈ Q such that x < r ′ < r
7. q < x and x < q → false
8. q < r → q < x or x < r .
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Geometric Theory
Propositional Theories

An important class of geometric theories:

Propositional Geometric Theory
Let Σ be a set of propositional symbols (in particular, no sorts).
Geometric formulae over Σ are constructed from the symbols in Σ
using > (true), ∧ and arbitrary disjunctions

∨
.

Remark #1
Strong analogy between the algebraic structure of propositional
geometric formulae and the lattice of open sets of a topological
space, otherwise known as a locale.
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Geometric Theory
Propositional Theories

An important class of geometric theories:

Propositional Geometric Theory
Let Σ be a set of propositional symbols (in particular, no sorts).
Geometric formulae over Σ are constructed from the symbols in Σ
using > (true), ∧ and arbitrary disjunctions

∨
.

Remark #2
CONSTRUCTIVE! But also interestingly, the locales associated to
propositional theories retain important results of classical topology
that often fail in constructivist point-set approach (e.g. deMorgan’s
Laws, a ∨ (X − a) = X , etc.)
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Geometric Theory
Logic and Generalised spaces

Locales vs. Grothendieck Toposes
Rrecall: A propositional geometric theory can be associated to a
(point-free) space known as a locale.

More generally, any geometric theory can be associated to a
Grothendieck topos, which is a special category that can be viewed
as a generalisation of locales, and thus a generalised point-free
space.

Models as Points of Generalised Spaces
A theory can be viewed as an axiomatic description of mathematical
structures (e.g. the theory of groups); a model is an object that
‘satisfies’ these axioms.

One may view the models of a geometric theory as the ‘points’ of the
topos.
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Geometric Theory
Continuity = Geometricity

Definition
1. A geometric morphism f : F → E of toposes is a pair of adjoint

functors f∗ : F → E and f ∗ : E → F , respectively called the direct
image and the inverse image of f , such that the left adjoint f ∗

preserves finite limits.

2. A geometric transformation α : f → g between two geometric
morphisms f ,g : F → E is a natural transformation f ∗ → g∗.

Definition
1. A global point of a topos E is defined as a geometric morphism

Set→ E .
2. A generalised point of a topos E is a geometric morphism F → E .
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Geometric Theory
Continuity = Geometricity

We can now make precise the sense in which the points of a topos
are the models of the theory it classifies:

Definition
The classifying topos of a geometric theory T is a Grothendieck topos
Set [T] that classifies the models of T in Grothendieck toposes, i.e. for
any Grothendieck topos E , we have an equivalence of categories:

Geom(E ,Set [T]) ' T-mod(E)

natural in E , where Geom(E ,Set [T]) is the category of geometric
morphisms from E to Set [T] and T-mod(E) is the category of models
of T in E .

Theorem
Every Grothendieck topos is a classifying topos of some geometric
theory T, and every geometric theory T has a classifying topos.
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Intro to Topos Theory
Classifying Topos

Fact
There exists something known as the generic model UT in every
classifying topos, which possesses the universal property that that
any model M in a Grothendieck topos E can be obtained, up to
isomorphism, as a pullback f ∗(UT) of the model UT along the inverse
image f ∗ of a unique geometric morphism f : E → Set [T].

An important consequence of this is that any geometric sequent that
holds for UT will hold for all models M of T.
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Intro to Topos Theory
Classifying Topos
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Geometric Theory
Continuity = Geometricity

Excerpt from Steve Vickers’ ’Continuity and Geometric Logic’:
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Propositional Theory of Dedekind Reals

The Dedekind sections (L,R) of the real number must satisfy the
following (geometric) axioms:

Axioms of R
1. ∃q ∈ Q such that q < x
2. q < q′ < x → q < x
3. q < x → ∃q′ ∈ Q such that q < q′ < x
4. ∃r ∈ Q such that x < r
5. x < r ′ < r → x < r .
6. x < r → ∃r ′ ∈ Q such that x < r ′ < r
7. q < x and x < q → false
8. q < r → q < x or x < r .
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Propositional Theory of Dedekind Reals
Locatedness

We’ve mentioned how mathematics that adheres to geometric logic
possesses an abstract form of continuity (since it would be preserved
by the inverse image functor of geometric morphisms).

The final axiom of R, often known as locatedness, allows us to
express the more familiar notion of continuity, by axiomatising the
analytic notion of limits:

If q < r , then either q < x or x < r .

Indeed (see, e.g. Maietti-Vickers) locatedness is equivalent to:
If (L,R) is a Dedekind real, and 0 < ε ∈ Q, then we can find
q ∈ L and r ∈ R such that r − q < ε.
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Propositional Theory of Dedekind Reals
Example of Continuity = Geometricity

Recall that given a geometric theory T, its classifying topos satisfies
the following universal property:

Geom(E ,Set[T]) ' T-mod(E)

In particular, letting R be the propositional theory of Dedekind reals,
then we obtain:

Geom(Set[R],Set[R]) ' R-mod(Set[R])

It is well known that given a generic Dedekind real x , one can define
x + x geometrically and x + x is also a Dedekind real. That is, x + x
is also a R-model in Set[R] and this (by the universal property)
corresponds to a geometric morphism Set[R]→ Set[R].
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Pointfree Construction of Positive Real Exponen-
tiation

GOAL: Construct an exponentiation map

F : R≥0 × R>0 → R≥0

(x , α) 7→ xα

I Adhere to geometric logic
I Corresponds to the classical account of positive real

exponentiation
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Pointfree Construction of Positive Real Exponen-
tiation

The main strategy was to ensure we were being geometric was to do
things step-by-step, in increasing order of complexity.

1. Define xa for x ∈ Q≥0 and a ∈ N.
2. Define xa for x ∈ R≥0 and a ∈ N
3. Define x

1
b for x ∈ R≥0 and b ∈ N. Then, define xq for x ∈ R≥0

and q a positive rational (since q = a
b for some a,b ∈ N).

4. Define xα for x ∈ R≥0, and α ∈ R>0
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Pointfree Construction of Positive Real Exponen-
tiation

Seems simple enough, but there were some technical challenges in
implementing this strategy:

Challenges
1. Some foundational aspects of point-free analysis have not been

worked out, so this needed developing before we could proceed.
2. Proving these constructions satisfies the locatedness axiom

whenever x is a (non-negative) Dedekind real, especially in Step
4.

3. Being forced to do case-splitting in Step 4, which had to be
justified by delicate gluing arguments.
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Pointfree Construction of Positive Real Exponen-
tiation

Step 4: Defining xα (The general case)

Motivating Question
Suppose we have shown that xq is a (non-negative) Dedekind real,
for all positive rationals q, and all non-negative Dedekind reals x .
How would we define xα then, for α a positive real?

Idea from classical analysis
Given some positive real α, and for q positive rational, q → α,
xq → xα.

Johnstone’s axiom for R
If (L,R) is a Dedekind real, and 0 < ε ∈ Q, then we can find q ∈ L
and r ∈ R such that r − q < ε.
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Pointfree construction of Positive Real Exponen-
tiation

Step 4: Defining xα (The general case)

So what is xα?
We would like to define (geometrically) that xα is the pair of Dedekind
sections (L,R) approximated by xq from above and below, and that
as q gets infinitesimally close to α, xq gets infinitesimally close to xα.

Problem #1
Roughly speaking, suppose we have |α− q| < ε. How do we
determine (constructively) a bound for |xα − xq |?

Problem #2
In addition, there are also antitone and monotone problems.
For instance, if x ∈ (0,1], then for positive rationals q < r , we have
that x r < xq whereas if x ∈ (1,∞) then we have xq < x r .
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Pointfree construction of Positive Real Exponen-
tiation

Step 4: Defining xα (The general case)

The upshot is that in order to define xα geometrically, we need to:

1. Split the non-negative Dedekind reals into four parts
R≥0 = {0} ∨ (0,1) ∨ {1} ∨ (1,∞)

2. Define xα on each of these four sublocales, and argue that we
do in fact get a Dedekind real

3. Glue these constructions together to get a continuous function.
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Pointfree construction of Positive Real Exponen-
tiation

Step 4: Defining xα (The general case)

The upshot is that in order to define xα geometrically, we need to:
1. Split the non-negative Dedekind reals into four parts

R≥0 = {0} ∨ (0,1) ∨ {1} ∨ (1,∞)

2. Define xα on each of these four sublocales, and argue that we
do in fact get a Dedekind real

3. Glue these constructions together to get a continuous function.

Justifying that all this works geometrically requires a lot of technical
effort. There are a couple of interesting themes that I’d like to mention
though:
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Pointfree Construction of Positive Real Exponen-
tiation

Theme #1: Nice properties of pointfree topology are nice
Recall that one of the attractive features of pointfree topology is that
we have constructive analogues of results from classical topology
(e.g. a∨ (X − a) = X )). As it turns out, these play an important role in
justifying why we are justified in splitting the non-negative Dedekind
reals into the different parts.

Theme #2: Nice properties of Q are very nice
It is well-known that < is decidable on Q, and virtually all of the
classic results of Q (e.g. the Archimedean property) can be
geometrically justified.
As it turns out, these nice properties of Q can be used to constrain
the more opaque (i.e. second-order) behaviour of the Dedekind reals,
and was particularly useful when proving that our constructions
satisfied the locatedness axioms (e.g. Bernoulli’s Inequality)
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Theme #1: Nice properties of pointfree topology are nice
Recall that one of the attractive features of pointfree topology is that
we have constructive analogues of results from classical topology
(e.g. a∨ (X − a) = X )). As it turns out, these play an important role in
justifying why we are justified in splitting the non-negative Dedekind
reals into the different parts.

Theme #2: Nice properties of Q are very nice
It is well-known that < is decidable on Q, and virtually all of the
classic results of Q (e.g. the Archimedean property) can be
geometrically justified.
As it turns out, these nice properties of Q can be used to constrain
the more opaque (i.e. second-order) behaviour of the Dedekind reals,
and was particularly useful when proving that our constructions
satisfied the locatedness axioms (e.g. Bernoulli’s Inequality)
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Adelic Geometry via Topos Theory

‘Nobody would ever want to do a point-free construction of real
exponentiation - it would be too painful.’ - Thomas Streicher to Steve
Vickers.
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Adelic Geometry via Topos Theory
Hasse’s Local-Global Principle in Number Theory

Hasse’s Local-Global Principle for Q
Some property P is true for Q iff it is true for all the completions of Q.

Definition of adele ring for Q
The adele ring AQ is defined to be the restricted product of all the
completions of Q. Morally speaking, the adele ring can be viewed as
the collection of the properties shared by all the completions of Q.

Idea
Instead of asking whether a property simultaneously holds for all
completions of Q (which forces us to use complicated algebraic
constructions like the adele ring AQ), what if we instead asked if a
property holds for the generic completion of Q?
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Adelic Geometry via Topos Theory
Absolute Values and Places

Starting point:

For simplicity, let us assume that our base field is Q. Classically, an
absolute value of Q is a function | · | : Q→ R such that for all x , y ∈ Q:

I |x | ≥ 0, and |x | = 0 iff x = 0

I |xy | = |x ||y |
I |x + y | ≤ |x |+ |y |
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Adelic Geometry via Topos Theory
Absolute Values and Places

Starting point:

For simplicity, let us assume that our base field is Q. Classically, an
absolute value of Q is a function | · | : Q→ R such that for all x , y ∈ Q:

I |x | ≥ 0, and |x | = 0 iff x = 0
I |xy | = |x ||y |
I |x + y | ≤ |x |+ |y |

We define a place as an equivalence class of absolute values
whereby | · |1 ∼ | · |2 if there exists some α ∈ (0,1] such that | · |1 = | · |α2
or | · |2 = | · |α1 . One might then wish to define the classifying topos of
places as the coequaliser of the following diagram in Top:
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Adelic Geometry via Topos Theory
Adele Ring as the Generic Completion

Remark #1
The coequaliser of this diagram exists, because it is known that Top
has all coequalisers. The next task is to describe the points of this
topos explicitly, which is a current work-in-progress.
Once we accomplish this, there are many very interesting
applications of the idea to current open questions in number theory,
model category theory etc.

Remark #2
The generic model of [places] is not the generic completion. I still
need to define the classifying topos of completions with respect to a
place. The generic model of that classifying topos will be something
similar to the original adele ring (cf. [10]).
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Adelic Geometry via Topos Theory

‘One can hope for a very general method of reduction and ‘dévissage’
that transforms a problem of multiple variables into a problem of a
single variable, where the difficulty of the original problem is
transformed into a problem of working constructively.’

— André Boileau, and André Joyal
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