
Notes/Remarks	on	Handout	2	and	Exercise	Sheet	2	
	
	
	

1) Euclidean	Algorithm			
	

OBJECTIVE:	Suppose	we	are	given	two	numbers,	a	&	b.	we	would	like	to	find	
their	largest	common	factor.		
	
QUESTION:	Is	there	a	standard	way	we	can	find	out	what	their	largest	common	
factor	is?	Who	knows	–	maybe	a	&	b	are	really	large	and	complicated	numbers,	
and	it’s	really	hard	to	guess	what	their	largest	common	factor	is	just	by	looking	
at	them.	
	
SOLUTION:	The	Euclidean	Algorithm	helps	us	with	this!		
	
Roughly	speaking,	what	the	while	loop	of	algorithm	does	is	that	it	takes	a	pair	
of	numbers	(e.g.	a	&	b)	and	it	spits	out	a	“smaller”	pair	of	numbers1		(e.g.	a’	&	b’)	
that	have	the	same	largest	common	factor	as	the	initial	pair	of	numbers.	More	
succinctly,	we	have	that	lcf	(a,b)	=	lcf	(a’,	b’).		
	
Since	(a’,b’)	are	a	“smaller”	pair	of	numbers	than	(a,b),	it	should	be	easier	to	
figure	out	what	their	largest	common	factor	is,	except	maybe	they	are	still	too	
complicated	for	us	to	figure	out.	So,	we	plug	(a’	&	b’)	into	the	while	loop	again,	
and	it	spits	out	an	even	smaller	pair	of	numbers	(e.g.	a’’	&	b’’)	which	have	the	
same	largest	common	factor	as	our	inputs,	i.e.	lcf	(a’,b’)	=	lcf	(a’’,	b’’),	and	we	
continue	until	we	get	a	pair	of	numbers	where	it	is	“obvious”	what	their	largest	
common	factor	is2.			
	
HOWEVER:	This	is	all	very	nice,	except	how	do	we	know	this	algorithm	actually	
works?	More	precisely,	how	do	we	know	that	while	loop	actually	takes	in	a	
pair	of	numbers	(e.g.	a	&	b)	and	spits	out	a	pair	of	numbers	(e.g.	a’	&	b’)	that	
indeed	have	the	same	largest	common	factor?		
	
Realise	that	this	question	is	basically	asking	whether	the	largest	common	factor	
changes	or	not	during	the	while	loop,	i.e.	whether	the	largest	common	factor	is	
a	loop	invariant	of	the	Euclidean	algorithm.	A	proof	of	this	fact	is	found	in	your	
lecture	notes,	page	11	of	Handout	2.		
	
Indeed,	one	of	the	main	reasons	behind	introducing	this	example	is	to	motivate	
why	we	are	interested	in	loop	invariants.	

	
	
	

																																																								
1	In	particular,	just	going	by	the	pseudo-code,	note	that	a’=b	and	b’=	a	mod	b.	Generally	speaking,	it	is	clear	that		
a	mod	b	(which	is	the	remainder	we	obtain	by	dividing	a	by	b)	is	less	than	a.	
2	In	particular,	suppose	we	have	a	pair	of	numbers,	x	&	y,	where	y	divides	x.	This	means	that:	(i)	the	remainder	r	=	
0,	where	r	=	x	mod	y;	(ii)	the	largest	common	factor	of	x	and	y	is	y	itself.	



2) Exercise	2.1	
	

Recall:	In	order	to	prove	some	statement	is	a	loop	invariant,	we	have	to	check	
that	the	statement	

• Holds	before	the	while	loop	is	begun	
• Holds	after	the	body	B has	been	executed	provided	it	was	true	before	

the	execution	of	the	body,	i.e.	if	it’s	true	for	the	Nth	execution	of	the	loop,	
it	is	also	true	after	the	(N+1)th	execution.	

	
	

The	main	difficulty	of	this	exercise	is:		
	

(1)	Knowing	exactly	what	we	are	given,	and	what	we	have	to	prove;		
(2)	Keeping	track	of	variables	whose	values	keep	changing.	In	other	
words,	it	helps	for	us	to	be	very	organized	in	our	thinking.	

	
	
For	this	reason,	it	may	be	helpful	to	have	a	visual	representation	of	what’s	going	
on.	Here’s	a	table	of	all	the	assignments	of	the	variables	at	various	stages	of	the	
algorithm	–	we	fill	in	the	values	simply	by	following	the	pseudo-code:	

	
	 x	 y	 ux	 vx	 uy	 vy	 u	 v	
	

Before	
while	loop	

	
a	

	
b	

	
1	

	
0	

	
0	

	
1	

	 	

	 	 	 	 	 	 	 	 	
Nth	loop	 xold	 yold	 uxold	 vxold	 uyold	 vyold	 	 	

(N+1)th	loop	 yold	 r	 uyold	 vyold	 u	–	k*	uyold	 v-k*	vyold	 uxold	 vxold	
	

	
	

	
	
	
	
	
	

SOLUTION:	
	

First	,	let	us	check	that	these	two	statements	hold	before	the	while	loop.	Reading	off	the	
values	of	the	table,	this	amounts	to	verifying	that:	

• x	=	1	*	a	+	0	*	b	=	a	
• y	=	0	*	a	+	1	*	b	=	b	

	
which	we	know	to	be	true,	because	of	how	we	assigned	the	initial	values	to	x	and	y.		

	
	

TASK:	We	want	to	prove	that	the	following	two	
statements	are	loop	invariants:	
	

• x	=	ux	*	a	+	vx	*	b	
• y	=	uy	*	a	+	vy	*	b	



Next,	let	us	assume	that	the	two	statements	hold	after	the	Nth	loop.	We	want	to	show	that	this	
implies	that	the	statements	hold	after	the	(N	+	1)th	loop	as	well.	
	
Let	us	be	more	explicit.	We	said	that	we	assume	the	two	statements	hold	after	the	Nth	loop	–	
but	what	does	it	mean	for	us	to	assume	that	the	following	statements		

• x	=	ux	*	a	+	vx	*	b	
• y	=	uy	*	a	+	vy	*	b	

	
to	be	true	for	the	Nth		loop?	Well,	reading	off	the	values	of	the	table,	this	means	we	are	
assuming	the	following	two	statements	a)	and	b)	are	true:	
	

a) xold	=	uxold	*	a	+	vxold	*	b	
b) yold	=	uyold	*	a	+	vyold	*	b	

	
And	we	would	like	to	use	this	information	to	prove	that	the	two	statements	are	true	for	the	
(N+1)th	loop.	But	what	exactly	does	it	mean	for	the	two	statements	to	be	true	for	the	(N+1)th	
loop?	Well,	reading	the	values	off	the	table	again,	it	means	that	we	want	to	prove	that	the	
following	two	statements	are	true:	
	

1) yold	=	uyold	*	a	+	vyold	*	b	
2) r	=	(u	–	k*	uyold)*	a	+	(v-k*	vyold)*	b	

	
Well,	we	know	that	statement	1)	is	true	because	we	already	assumed	that	b)	is	true.	So	we	get	
that	one	for	free.	Awesome!	
	
But	what	about	statement	2)?	Well,	by	Theorem	1	of	Handout	1,	we	know	that	xold	=	k*yold	+	r,	
which	we	can	rearrange	to	get:	

r	=	xold	–	k*yold	
	
Now,	by	statements	a)	and	b),	we	know	what	the	values	of	xold	and	yold	are,	so	we	can	plug	
them	into	the	expression	to	get:	
	

r	=	uxold	*	a	+	vxold	*	b	–	k*(	uyold	*	a	+	vyold	*	b)	
			=	uxold	*	a	+	vxold	*	b	–	k*(	uyold	*	a)	+k*(	vyold	*	b)	
			=	(uxold	–	k*	uyold)*	a	+	(vxold	-k*	vyold)*	b		
			=	(u	–	k*	uyold)*	a	+	(v-k*	vyold)*	b	

	
where	the	last	equality	follows	from	reading	off	the	values	of	u	and	v	from	the	table,	once	
again.	Now,	this	computation	proves	that		
	

r	=	(u	–	k*	uyold)*	a	+	(v-k*	vyold)*	b	
	
Which	is	exactly	statement	2),	as	desired!	
	
In	sum,	we	assumed	statements	a)	and	b)	were	true,	and	we	showed	that	this	assumption	
implies	that	statements	1)	and	2)	are	true.	In	other	words,	we	showed	that	if	the	two	
statements	hold	for	the	Nth	loop,	they	hold	for	the	(N+1)th	loop	as	well.	Putting	everything	
together,	we	proved	that	the	two	statements	are	in	fact	loop	invariants!	


