
How	to	Write	a	Proof	
	

Intro		
	

When	it	comes	to	proof	questions,	many	of	you	know	how	to	carry	out	the	relevant	
computations	(once	you	know	what	the	relevant	computations	are),	but	are	unsure	
about:		
(i) How	these	computations	fit	into	a	“proof”;		
(ii) How	to	figure	out	which	are	the	relevant	computations	to	do,	when	given	a	

proof	question.		
	

The	purpose	of	this	note	is	to	guide	you	on	how	to	write	a	proof,	and	remind	you	of	the	
various	kinds	of	proof	questions	you’ve	encountered	thus	far	in	the	course.	
	

What	is	a	Proof?	
	

In	mathematics,	there	are	things	that	we	know	to	be	true	and	there	are	things	we	don’t	
(yet)	know.	A	proof	is	a	way	of	using	the	information	that	we	know	or	assume	to	be	
true,	in	order	to	deduce	something	that	we	don’t	yet	know	to	be	true:	

	
	
	
	

	
	
	

How	to	Write	a	Proof?	
	

You	need	to	communicate	to	the	examiner	that	you	understand	what	you	need	to	
prove,	what	information	you	are	allowed	to	assume	to	be	true	and	how	to	carry	out	the	
relevant	computations	to	deduce	what	you	want	to	show	to	be	true.	
	
Many	of	you	get	stuck	or	are	intimidated	by	proof	questions.	This	is	often	just	a	
psychological	barrier,	which	can	be	overcome	by	breaking	up	the	question	into	more	
manageable	components.	One	way	to	do	this	is	to	follow	the	three	steps	below	
whenever	you	are	faced	with	a	proof	question:		
	

• Step	1:	Write	down	what	you	need	to	prove		
o E.g.	“We	want	to	prove	that	….”	

	
• Step	2:	Write	down	the	relevant	information	from	the	question,	and	what	we	are	

allowed	to	assume	to	be	true	
o E.g.	“We	know	that	K	is	a	field…”,	“We	assume	that	a	is	non-zero”…	etc.	

	
• Step	3:	Use	the	relevant	information	from	our	lecture	notes	to	manipulate	the	

information	in	Step	2	to	compute	the	desired	result	stated	in	Step	1.		
o This	“relevant	information”	may	include	(but	is	not	limited	to):	

§ Important	definitions	and	properties	(e.g.	positive	definiteness	of	
inner	product)	

§ Axioms	of	semi-rings,	rings,	fields…	

Things	we	
know/assume	to	

be	true	

Things	we	don’t	
yet	know	to	be	

true	



§ Theorems	(e.g.	Theorem	1	from	Handout	1)	
§ Formulas	(e.g.	how	to	reflect	a	point	across	a	line)	

	
	
	
	
	
	
	

	
	

Examples	of	Proofs:	
	
	

1) Prove	a	statement	is	true,	given	a	particular	assumption	
	
In	mathematics,	many	statements	are	true	only	under	special	hypotheses	or	
assumptions.	One	way	of	expressing	this	logical	relationship	is	to	say	that	A	implies	B,	
or	in	logical	notation:	

𝐴 ⇒ 𝐵	
	
where	the	symbol	“⇒”	means	“implies”.	In	plain	words,	this	means	that	“If	A	is	true,	
then	B	is	true.”	
	
Remark:	Note	that	if	A	implies	B,	and	B	implies	C,	then	A	implies	C.	In	logical	notation,	
if	𝐴 ⇒ 𝐵	and	𝐵 ⇒ 𝐶,	then	𝐴 ⇒ 𝐶,	i.e.	if	𝐴	is	true,	then	𝐶	is	true.	
	
Many	proof	questions	are	of	this	flavour	–	they	will	ask	you	to	prove	a	statement	(i.e.	
“B”)	under	specific	hypotheses	(i.e.	“A”).	In	which	case,	following	the	three	steps	
template,	your	answer	should	look	something	like:	

	
• Step	1:	Write	down	what	you	need	to	prove		

o In	this	case:	“We	want	to	prove	B”	
	

• Step	2:	Write	down	relevant	info/assumptions	from	the	question:		
o In	this	case:	“We	assume	that	A	is	true.”	

	
• Step	3:	Use	relevant	knowledge	to	manipulate	info	from	Step	2	to	get	to	Step	1		

o In	this	case,	our	answer	may	look	something	like:	
§ “Because	of	Reason	X,	we	know	that	𝐴 ⇒ 𝐴’.	Since	𝐴	is	(assumed	

to	be)	true,	this	means	that	𝐴!	is	also	true.	
§ Because	of	Reason	Y,	we	know	that	𝐴′ ⇒ 𝐵.	Since	we	just	showed	

that	𝐴′	to	be	true,	we	know	that	𝐵	is	also	true.		
§ Since	this	is	exactly	what	we	wanted	to	prove	(see	Step	1),	we	are	

done	with	the	proof!” 
	

	
	
	
	

Rule	of	Thumb:	If	the	question	mentions	that	we	are	operating	in	a	
field,	and	we	are	interested	in	some	non-zero	element	a≠0	in	the	
field,	you	probably	have	to	use	the	fact	that	a	has	a	multiplicative	
inverse	somehow,	i.e.	there	exists	some	a-1	such	that	a-1		×	a	=	1 



	
	

2) Proof	by	Induction	
	

We	are	familiar	with	the	idea	of	a	function 𝑓 𝑥 	–	it	takes	a	number	“x”	as	input,	and	
spits	out	another	number	“𝑓 𝑥 ”	as	output.	We	also	know	what	that	𝑥	is	a	variable	–	i.e.	
as	far	as	the	function	𝑓 𝑥 	is	concerned,	𝑥	is	not	just	one	particular	value	but	rather	a	
whole	range	of	values.		

	
A	similar	idea	is	going	on	when	we	talk	about	induction.	However,	here	we	are	dealing	
with	statements	𝑃(𝑛)	rather	than	functions	–	𝑃(𝑛)	takes	a	number "𝑛"	as	input,	and	
spits	out	a	mathematical	statement	about 𝑛	,	i.e.	“𝑃(𝑛)",	which	may	or	may	not	be	true.	

	
The	classical	induction	problem1	looks	something	like	this:	we	want	to	prove	that	the	
statement	𝑃(𝑛)	is	true	for	all	natural	numbers	𝑛.	But	how	do	we	actually	prove	this?	
	
One	option	is	to	manually	compute	that	𝑃(0)	is	true,	𝑃(1)	is	true,	𝑃(2)	is	true…	but	
there	are	infinitely	many	numbers	for	us	to	check,	so	it	is	impossible	for	us	to	manually	
verify	that 𝑃(𝑛)	is	true	for	all	natural	numbers	𝑛.	So	this	option	doesn’t	work.	What	
should	we	do	now?	
	
“Proof	by	induction”	gives	us	the	answer	to	our	prayers	by	using	the	strategy	of	“Prove	
a	statement	is	true,	given	a	particular	assumption”	in	a	very	clever	way.	
	
Recall	our	previous	remark	that	if	A	implies	B,	and	B	implies	C,	then	A	implies	C.	Note	
that	we	can	iterate	this	sort	of	reasoning	indefinitely:	

	
• If	𝐴 ⇒ 𝐵	and	𝐵 ⇒ 𝐶,	then	𝐴 ⇒ 𝐶.		

o In	particular,	if	𝐴	is	true,	then	𝐶	is	also	true.	
• If	𝐴 ⇒ 𝐵,	𝐵 ⇒ 𝐶,	and	𝐶 ⇒ 𝐷,	then	𝐴 ⇒ 𝐷.	

o In	particular,	if	𝐴	is	true,	then	𝐷	is	also	true.	
• If	𝐴 ⇒ 𝐵,	𝐵 ⇒ 𝐶,	𝐶 ⇒ 𝐷	and	𝐷 ⇒ 𝐸,	then	𝐴 ⇒ 𝐸	

o In	particular,	if	𝐴	is	true,	then	𝐸	is	also	true.	
…	etc.	

	
Applying	this	observation	to	our	problem	of	proving	𝑃(𝑛)	is	true	for	all	𝑛,	we	have	the	
following:		

	
• If	𝑃(0) ⇒ 𝑃(1)	and	𝑃(1) ⇒ 𝑃(2),	then	𝑃(0) ⇒ 𝑃(2)	

o In	particular,	if	𝑃(0)	is	true,	then	𝑃(2)	is	also	true.	
	

• If	𝑃 0 ⇒ 𝑃 1 ,	𝑃 1 ⇒ 𝑃 2 	and	𝑃 2 ⇒ 𝑃 3 ,	then	𝑃 0 ⇒ 𝑃 3 	
o In	particular,	if	𝑃(0)	is	true,	then	𝑃(3)	is	also	true.	

	
• If	𝑃 0 ⇒ 𝑃 1 ,	𝑃 1 ⇒ 𝑃 2 ,	𝑃 2 ⇒ 𝑃 3 ,	and	𝑃 3 ⇒ 𝑃 4 ,		

then	𝑃 0 ⇒ 𝑃 4 	
o In	particular,	if	𝑃(0)	is	true,	then	𝑃(4)	is	also	true.	

…	etc.	

																																																								
1	IMPORTANT:	There	are	variations	of	this	set-up	–	see	Exercise	1	for	examples	of	this!	



	
Once	you’ve	convinced	yourself	of	the	above	line	of	reasoning,	it	should	be	clear	to	
you	why	proof	by	induction	requires	us	to	check	the	following	two	things:	

	
• Base	Case:	𝑃 0 	is	true	
• Inductive	step:	𝑃 𝑛 ⇒ 𝑃 𝑛 + 1 		

	
In	particular,	note	that:		
(i) Proving	the	inductive	step	means	that	we	know	that	𝑃 0 ⇒ 𝑃 1 ,	𝑃 1 ⇒ 𝑃 2 ,	

𝑃 2 ⇒ 𝑃 3 	etc.;		
(ii) Proving	that	𝑃 0 	is	true	proves	that	𝑃 1 ,𝑃 2 ,𝑃(3)	etc.	are	also	true	(once	we	

proved	the	inductive	step)	
	

	
Exercise	1.1	(b)	

	
	
	
	

	
	
(Note:	I’m	being	a	little	pedantic	and	including	more	detail	in	my	answer	here	than	is	
probably	required	during	the	exam	–	I’m	just	writing	out	my	thought	process	in	case	
people	are	still	confused	by	how	to	do	proof	by	induction	questions…	)	
	
• Step	1:	Write	down	what	you	need	to	prove		

o Remark:	
§ When	doing	proof	by	induction,	we	need	to	be	clear	what	our	

𝑃 𝑛  is.	
o In	this	case:	

§ Define	𝑃 𝑛 : 2𝑛
 
<  𝑛! 	

§ We	want	to	prove	by	induction	𝑃 𝑛 	is	true	for	all natural 
numbers greater than 3	

	
• Step	2:	Write	down	relevant	info/assumptions	from	the	question:	

o In	this	case:		
§ We	only	need	to	prove	𝑃 𝑛 	is	true	for	all	natural	numbers	

greater	than	3.		
§ Hence,	for	this	question,	our	base	case	is	𝑃 4 .	2	

	
• Step	3:	Use	relevant	knowledge	to	manipulate	info	from	Step	2	to	get	to	Step	1		

o Proof	by	induction	requires	us	to	check	two	things:	
	

o 1.	Base	Case:	𝑃 4 	is	true	
	

To	show	𝑃 4 	is	true,	we	need	to	show	that:	24	<	4!	
	
To	show	this,	we	compute:	

																																																								
2	Since	we	aren’t	interested	in	𝑃 0 , 𝑃 1 ,𝑃 2 	and	𝑃 3 	

QUESTION: Prove by induction that 2n < n! for all natural numbers 
greater than 3. � 



o 24	=	16	
o 4!	=	24	

	
And	we	observe	that:	

16	<	24	
	
Which	thus	shows	that	(as	desired):	

24	<	4!	
	

§ 2.	Inductive	Step:	𝑃 𝑛 ⇒ 𝑃 𝑛 + 1 ,	for	all	𝑛 > 3	
	

Note	that	the	inductive	step	is	a	mini-proof	that	asks	us	to	prove	a	
mathematical	statement	given	a	particular	assumption.	So	let’s	follow	
the	three	steps	again:	

	
	

§ Step	2a:	Write	down	what	you	need	to	prove.	
o In	this	case:		

§ We	want	to	prove	𝑃 𝑛 + 1 	is	true,	
	i.e.	𝑃 𝑛 + 1 : 2!!!

 
< (𝑛+ 1)!	

	
§ Step	2b:	Write	down	relevant	info/assumptions	

o In	this	case:		
§ We	assume	that	𝑃 𝑛 	is	true,	i.e. 𝑃 𝑛 : 2𝑛

 
<  𝑛!	

§ We	also	assume	that	n>3	
	

§ Step	2c:	Use	relevant	knowledge	to	manipulate	info	to	get	to	Step	2a	
o In	this	case:		

§ First,	we	observe	that		
• 2!!!	=	2	∗	2!		
• (𝑛 + 1)!	= 𝑛 + 1 ∗ 𝑛!	

	
§ Hence,	proving	the	following	inequality:	

	 	 	 	 	 	 	 2!!!
 
< (𝑛+ 1)!	

	
is	the	same	as	proving	the	following	inequality:	
	

	 	 	 	 	 	 	 2 ∗ 2𝑛
 
< 𝑛+ 1 ∗ 𝑛!	--------------(*)	

	
§ Question:	How	can	we	use	the	inequality	in	𝑃 𝑛 	to	

prove	the	above	inequality?		
	
Note:	if	we	multiply	both	sides	of	𝑃 𝑛 	by	2,	we	get:	
	
 2𝑛

 
<  𝑛!	

																																																																														⇒ 2 ∗ 2𝑛
 
<  2 ∗ 𝑛!		--------------------------(**)	

	
Note	further	that	since	n>3	(see	Step	2b),	this		
yields:	
	



 3 < 𝑛	
⇒ 2 < 𝑛																										(since	2	<	3	<	n)		
⇒ 2 < 𝑛+ 1								
⇒ 2 ∗ 𝑛! < 𝑛+ 1 ∗ 𝑛!		--------------------(***)	
	

§ Putting	the	two	inequalities	(**)	and	(***)	together	
yields:	
	
2 ∗ 2𝑛

 
<  2 ∗ 𝑛! < 𝑛+ 1 ∗ 𝑛!					

⇒ 2 ∗ 2𝑛 < 𝑛+ 1 ∗ 𝑛!
 	

⇒ 2!!!
 
< (𝑛+ 1)!

 
	

	
where	the	final	implication	follows	from	our	
remarks	about	𝑃 𝑛 + 1 	in	(*).		This	proves	the	
inductive	step,	and	we	are	thus	done!	
	
	

3) Prove	something	is	a	loop	invariant	
	

See	Handout	for	a	detailed	solution	to	Exercise	2.1.	
	

4) Prove	a	statement	is	true	by	splitting	it	into	different	cases	
	

One	way	to	solve	a	complicated	problem	is	to	break	it	up	into	smaller	problems	
which	are	more	manageable.		We	then	solve	all	the	smaller	problems,	and	argue	
that	this	solves	the	original	problem.	
	
See	the	following	question	from	Exercise	Sheet	3:	

	

	
	

• Step	1:	Write	down	what	you	need	to	prove		
o In	this	case:		

§ We	want	to	prove	that	𝑎 = 0	or	𝑣 = 0 is	true.	
	

• Step	2:	Write	down	relevant	info/assumptions	from	the	question:		
o In	this	case:		

§ We	assume	that	𝑎 ∗ 𝑣 = 0	
§ We	are	operating	in	“an	algebra	of	vectors	over	any	field”,	hence	𝑎	

is	an	element	of	a	field.	
	

• Step	3:	Use	relevant	knowledge	to	manipulate	info	from	Step	2	to	get	to	Step	1		
o Remark:	There	are	only	two	possibilities	for	what	value	𝑎	can	take	–	

either	𝑎 = 0	or	𝑎 ≠ 0.	Hence,	we	can	split	the	problem	into	two	cases.	
	



§ CASE	1:	𝑎 = 0	
• Note:	If	𝑎 = 0,	then	clearly	the	statement	we	want	to	prove	

in	Step	1	is	true	(i.e.	𝑎 = 0	or	𝑣 = 0)	
	

§ CASE	2:	𝑎 ≠ 0	
• If	𝑎 ≠ 0,	then	the	only	way	the	statement	“𝑎 = 0	or 𝑣 = 0”	

can	still	be	true	is	if	𝑣 = 0.		
• So	what	we	have	to	prove	in	Case	2	is:	

	𝑎 ≠ 0 ⇒  𝑣 = 0	
	

• Note:	since	𝑎 ≠ 0	and	𝑎	is	an	element	of	a	field,	it	has	a	
multiplicative	inverse	𝑎!! such	that	𝑎!! ∗ 𝑎 = 1	
	

• Now,	note:	
	

𝑣 = 1 ∗ 𝑣	
=  (𝑎!! ∗ 𝑎) ∗ 𝑣										(since	𝑎!! ∗ 𝑎 = 1)	
=  𝑎!! ∗ 𝑎 ∗ 𝑣 										(since	multiplication	is	associative)	

  = 𝑎!! ∗ 0	
= 0	

	
• We	have	thus	computed	that	indeed	𝑣 = 0,	and	we	are	

done!	
	
	

5) Prove	the	existence	of	something	
	

Questions	like	this	requires	us	to	use	the	given	information	to	“cook	up”	the	desired	
thing	we	want	to	prove	the	existence	of.	An	example	is	the	following	question:		

	
Exercise	2.2	(b)	

	

	
	

	
• Step	1:	Write	down	what	you	need	to	prove		

o In	this	case:		
§ We	want	to	prove	that	there	exists	an	element	𝑐	in	K	such	that	

𝑎 ∗ 𝑐 = 𝑏	(given	some	element	𝑎 ≠ 0,	and	any	element	𝑏	of	K)		
	
	
	

• Step	2:	Write	down	relevant	info/assumptions	from	the	question:		
o In	this	case:		

§ K	is	a	finite	field.	
§ 𝑎	is	a	non-zero	element	of	K.	



• In	particular,	since	K	is	a	field	and	𝑎 ≠ 0,	this	means	it	has	
a	multiplicative	inverse	𝑎!! such	that	𝑎!! ∗ 𝑎 = 1	

§ b	is	an	element	of	K.	
	

• Step	3:	Use	relevant	knowledge	to	manipulate	info	from	Step	2	to	get	to	Step	1		
	

o So	given	an	element	𝑎 ≠ 0,	and	any	element	𝑏	of	K,	how	can	we	cook	up	
this	element	𝑐	such	that	𝑎 ∗ 𝑐 = 𝑏?	
	

o One	possibility	is	to	define	𝑐	as	𝑐 = 𝑎!! ∗ 𝑏.		
	

o A	quick	computation	verifies	that	this	is	indeed	the	correct	choice	since:	
	

	𝑎 ∗ 𝑐 = 𝑎 ∗ 𝑎!! ∗ 𝑏 = (𝑎!! ∗ 𝑎) ∗ 𝑏 = 1 ∗ 𝑏 = 𝑏	
	

Which	is	exactly	what	we	wanted.		
	
To	recap:	what	have	we	done?	We	were	given	an	element	𝑎 ≠ 0,	and	any	
element	𝑏	of	K.	Based	only	on	this	information,	we	managed	to	cook	up	a	
𝑐	such	that	𝑎 ∗ 𝑐 = 𝑏,	as	desired!	

	


